
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 1 (JAN-FEB 2018), PP. 56-59

56 | P a g e

STUDY OF DIVERSE MODELS OF DEADLOCK

DETECTION IN DISTRIBUTED ENVIRONMENT

SAHIBA RAZA 1, JAMEEL AHMAD 2,

Department Of Computer Science
1M.Tech- CSE (P.T.) Integral University,
2Assistant Professor Integral University,

Lucknow. India

Abstract— A distributed system is much larger and more

prevailing than typical centralized systems due to the combined

capabilities of distributed components. Examples of distributed

systems include computer networks, distributed databases,

distributed information processing systems and real time process

control systems. In this paper, we review diverse models that are

used to classify deadlock detection algorithms and determine the

condition for detecting deadlock.

Index Terms— Distributed Deadlock, WFG, Communication

Deadlock, Deadlock Models.

I. INTRODUCTION

Deadlock can take place whenever two or more processes

are competing for limited resources and the processes are

allowed to attain and hold a resource (obtain a lock) thus

preventing others from using the resource while the process

waits for other resources.

There are three ways to deal with distributed deadlocks,

namely: deadlock prevention, deadlock avoidance and

deadlock detection. In deadlock prevention algorithm a process

executes by forming wait-for relations with other conflicting

processes in distributed systems. But deadlock prevention

algorithms are inefficient and impractical for distributed

systems [7]. Dijkstra has proposed the Banker’s algorithm

which serves as a basis for all deadlock avoidance algorithms.

Banker’s algorithm is widely used to avoid deadlocks in

centralized systems. Since the resource requirement of a

process depends on run-time inputs, complex branching and

execution environment, Banker’s algorithm cannot be used to

avoid deadlocks in practice [8]. Many algorithms have been

proposed in the literature for deadlock avoidance in specific

distributed systems where the distributed WFG are non-

recursive and known priori.

Deadlock Detection is more optimistic and feasible than

deadlock prevention and avoidance methods. Distributed

deadlock detection algorithms have maintained the WFG to

represent the dynamic wait-for dependencies between

distributed processes. The WFG is then analyzed periodically

or continuously to detect the presence of deadlock.

Four principles, namely path pushing, edge chasing,

diffusing computation and global state detection have been

used to sense distributed deadlocks in the literature. Many path

pushing based algorithms are disproved later. Edge chasing is

mainly used to detect resource deadlocks whereas diffusing

computation is widely used to detect communication deadlocks

and generalized deadlocks [12]. Global State detection is used

to determine the stable properties such as deadlock detection,

termination detection in distributed systems.

II. RESOURCE DEADLOCK DETECTION ALGORITHMS

Deadlock Detection is more optimistic and feasible than

deadlock prevention and avoidance methods. Distributed

deadlock detection algorithms have maintained the WFG to

represent the dynamic wait- for dependencies between

distributed processes. The WFG is then analyzed periodically

or continuously to detect the presence of deadlock.

Four principles, namely path pushing, edge chasing,

diffusing computation and global state detection have been

used to detect distributed deadlocks in the literature. Many path

pushing based algorithms are disproved later. Edge chasing is

mainly used to detect resource deadlocks whereas diffusing

computation is widely used to detect communication deadlocks

and generalized deadlocks [1]. Global State detection is used to

determine the stable properties such as deadlock detection,

termination detection in distributed systems.

Depending on the distributed application/environment, a

process can make different type of requests Sanchez et. al.[2]

have defined various request models, namely SR model, AND

model, OR model, AND-OR model, P out-of Q model and

Unrestricted model. Those models are used to classify

deadlock detection algorithms and determine the condition for

detecting deadlock.

A. Single Resource Model

SR model is the simplest request model of distributed

environment. Because of its simplicity, this model has been

widely used to model resource acquisition. AND model, also

known as Resource deadlock model, is the generalization form

of SR model. A typical resource request of a transaction in the

Database System is an example of AND request. In both SR

and AND model, the presence of cycle in the WFG implies

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 1 (JAN-FEB 2018), PP. 56-59

57 | P a g e

deadlock. The basic principle behind the algorithms that detect

deadlocks in SR and AND model is discussed as follows.

B. AND Model

Prieto et al[3] have proposed the distributed algorithm in

which a blocked process sends two types of messages in two

different directions. It declares deadlock once a process

receives the information about the same process in both type of

messages. It simplifies a deadlock resolution by aborting a

process in the message to resolve deadlock.

None of the above algorithms are able to identify deadlocks

in which the initiator is not directly involved in the cycle [4].

These have proposed another algorithm in which deadlocks can

be detected even if the initiator does not belong to any

deadlock cycle. The initiator of this algorithm builds the

Directed Spanning Tree (DST) by propagating probes among

its dependents. A probe carries the dependency relationship

(route string) among the processes. Based on the information

about data dependency between the processes, it determines a

deadlock. However, it suffers with few limitations. First, all

deadlocks reachable from the initiator may not be resolved by a

single execution of the algorithm. Second, deadlock detection

algorithm works correctly for single execution of the

algorithm, but it would detect phantom deadlocks in case of

multiple executions [4].

Sanchez et al.[2] have proposed history based edge chasing

algorithm to detect deadlock irrespective of whether the

initiator is directly or indirectly involved in the deadlock

cycle[3]. In this algorithm, a probe comprises two parameters

namely the initiator id and an integer string called route string.

When a process receives the first probe message, it stores a

probe in its memory and forwards the probe to its dependents

after appending its id in route-string. Upon receiving a

message, if the route-string in the message is a prefix of the

route-string in the memory in any process, this algorithm

declares a deadlock. Since the deadlock resolution is initiated

immediately after detecting the deadlock, it significantly

reduces the deadlock persistence time. Moreover, it minimizes

the messages for handling the executions of the algorithm

using the priorities associated with each process and avoids the

detection of same deadlock.

Sanchez et al.[3] have proposed a priority based probe

algorithm to simplify the detection of multi-cycle deadlocks[8].

In this algorithm, the priority is maintained in each process.

Whenever a process is blocked, it initializes the algorithm and

circulates the token/probe among its dependents. Upon

receiving a token, a process compares the priority in the token

with its own priority. If the token is attached with highest

priority, the token is forwarded to its dependents; otherwise,

the priority is updated and the token is subsequently dropped.

Therefore, when multiple processes initiate the algorithm,

different priorities are attached with the token that belongs to

different instance of the algorithm. As a result, if a deadlock

exists, a token initiated by a process that has higher priority

will automatically return to the initiator. Moreover, it does not

circulate separate messages to clean up the storage of processes

as in the existing probe based deadlock detection algorithms.

Razzaque et. al.[4] have proposed an algorithm which

detects mutli-cycle deadlock detection using probe discard

policy. According to the policy, if a process that has already

received the probe, receives a probe of another instance, it

discards the probe message. Hence, all processes in a deadlock

cycle participate in the execution of single instance at a time. It

also simplifies the deadlock by victimizing a single process

that is waiting for more number of resources. Rahimalipour et.

al.[7] have proposed another algorithm which enforces the

probe discard policy for detecting multi-cycle deadlocks using

daemons. It considerably reduces the message overhead and

memory overhead associated with each process as in

Razzaque’s algorithm.

Ashfield et al [8] have used agent based edge chasing

algorithm to determine deadlock in the AND model. In this

algorithm, each process is aware of its predecessors and

successors simultaneously. Hence, it detects a deadlock cycle

with size two locally as compared to the earlier algorithms.

These have proposed another agent based algorithm in which

mobile agents are moved across the distributed systems for

collecting adequate information to determine deadlock.

Ashfield et al have proposed a mobile agent based deadlock

detection algorithm, called M-Guard, which collects the

resource request/ allocation information about the processes

[9]. The agents are moving along the information among the

distributed processes to determine deadlocks. This algorithm

slightly reduced the network traffic as compared to other

mobile agent based algorithms.

In a faulty distributed system, faulty processes may

interrupt the execution of deadlock detection algorithms. These

have proposed a distributed deadlock detection algorithm by

integrating priority-based probe algorithm and fault diagnosis

model. In this algorithm, the probe is propagated in a backward

direction. In this algorithm, the probe message carries the

information about faulty processes along with the initiator. If a

process receives a probe from a non faulty process, it forwards

the probe message; otherwise, it discards the probe and sends a

message to clean up the storage of processes that have already

received the probe messages. Ashfield et al [8] have proposed

token based fault tolerant algorithm which can handle the loss

of resource release messages.

III. COMMUNICATION DEADLOCK DETECTION ALGORITHMS

OR Model

The OR model, also called as communication model, is

used to represent the alternative structures in programming

languages such as CSP, ADA and replicated database systems.

 Ashfield et al [8] have proposed a knot detection algorithm

which detects a knot by checking whether all processes that are

reachable from the initiator are in a cycle with the initiator. In

this algorithm, a process does not know the resource requests

of other processes. It also avoids the propagation of reply

messages through the processes that are not reachable from the

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 1 (JAN-FEB 2018), PP. 56-59

58 | P a g e

initiator. Comparing to the other algorithms in this category,

this algorithm detects all nodes that are involved in the knot.

Hence, it simplifies the deadlock resolution.

The algorithms in the third category detects an OR

deadlock by detecting a knot which is defined as a strongly

connected subgraph. In a strongly connected subgraph, there is

no edge directed outside the subgraph.

IV. DEADLOCK DETECTION ALGORITHMS FOR GENERAL

MODEL

A. AND-OR Model

The AND-OR model allows a process to specify the

resource requests as a predicate by using logical AND and OR

operators. In this model, deadlock is detected by applying the

test for OR deadlock repeatedly. The algorithms that are used

to detect deadlocks in AND-OR model are described below.

Ashfield et al[8] have presented another algorithm which

uses two levels of deadlock detection procedures. In the first

level, the algorithm search for a cycle in the WFG. If the cycle

is found, the second- level algorithm which is similar to

Harman and Chandy’s algorithm is initiated by the qualified

initiator. However, if the cycle does not exist in the WFG, it

does not invoke the second level algorithm. Since it controls

the tree computation, it reduces the communication cost as

compared to the Herman’s algorithm.

B. Generalized/ P out-of Q Model

P out-of Q Model is the generalization of all previous

models. Although the generalized request model is equivalent

to the AND-OR model, the length of the predicate in P out-of

Q model is P. Moreover, the P out-of Q model defines

distributed deadlock problem independent of the underlying

request model. It brings more flexibility by permitting the

distributed processes to change the resource request model.

Since the presence of cycle or knot in the WFG is insufficient

to determine a deadlock, the generalized deadlock detection

algorithms have to examine some complex topology in the

WFG [1]. Hence, very few generalized deadlock

detection algorithm have been proposed in the literature. The

working principle of all generalized deadlock detection

algorithms is discussed as follows.

Ashfield et al [8] has proposed an algorithm in which the

initiator constructs the LWFG by using the ancestor-

descendent relationship between the processes. It uses less than

2e messages in 2d time units to detect a deadlock. It reduces

the message length into O (e-n+m), where m indicates the

number of nodes that are not associated with any non-tree

edges in the spanning tree induced by the algorithm. However,

it needs additional technique to assign a unique path string to

each node in the WFG and to interpret the path strings for

constructing LWFG at the initiator. In contrast to Chen’s

algorithm, it resolves all deadlocks reachable from the initiator.

C. Unrestricted Model

In unrestricted model, there is no assumption about

underlying structure of resource requests. The deadlock

detection algorithms of this model have more theoretical value

from the perspective of distributed systems. Moreover, those

algorithms can be used to detect other stable properties such as

distributed monitoring and distributed debugging and global

state detection. However, the deadlock detection algorithms

developed for this model carry the additional overhead which

can be avoided in the algorithms designed for previous models.

Also, those algorithms have to search the whole system to

construct the WFG for deadlock detection.

Designing algorithms for controlling distributed system is

difficult due to the following reasons: First, there is no

single site/computer that controls the entire distributed

system. Second, computers/sites have to exchange messages

with other computers to perform a task. In this chapter we

study diverse communication and recourse deadlock detection

algorithms.

V. CONCLUSION

Deadlock detection is cumbersome in distributed systems

since no site has complete knowledge about the resource

requirements of all processes. The distributed deadlock

detection algorithms are classified based on the underlying

deadlock models such as AND model, OR model, AND-OR

model and P out-of Q model. Among the models, P out-of Q

model, also called as generalized request model, has the

modeling power of all other models and much more concise

expressive power than other models. However, it is difficult to

detect deadlock in the generalized request model. It is observed

that only very few algorithms have been proposed to detect

deadlock in the literature. Though the algorithms have reduced

the deadlock duration through the years, they have paid very

little attention on other key measures such as number of

messages and message size.

REFERENCES

[1] Lee, S. “Fast, Centralized Detection and Resolution of

Distributed Deadlocks in the Generalized Model”, IEEE

Transaction on Software Engineering, Vol. 30, No. 9, pp. 561-

573, 2004.

[2] Sanchez, C., Sipma, H., Manna, Z., Subramonian, V. and Gill,

C.D. ”On Efficient Distributed Deadlock Avoidance for Real-

Time and Embedded Systems”, Proceedings of the Twentieth

IEEE International Parallel and Distributed Processing

Symposium, IEEE Computer Society Press, pp. 133-136, 2006.

[3] Prieto, M. Villadangos, J., Fariña, F. and Córdoba, A “An O(n)

distributed deadlock resolution algorithm”, Proceedings of the

Fourteen Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing, pp. 48-55, 2006.

[4] Razzaque, M.A.,Rashid, M.M. and Hong, C.”MC2DR: Multi-

cycle Deadlock Detection and Recovery Algorithm for

Distributed Systems”, Proceedings of the High Performance

Computing and Communications, pp. 554-565, 2007

[5] Hashemzadeh, M., Farajzadeh, N. and Haghighat, A.T.

“Optimal detection and resolution of distributed deadlocks in the

generalized model”, Proceedings of the Fourteen Euromicro

International Conference on Parallel, Distributed, and Network-

Based Processing, pp. 133-136, 2006

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 1 (JAN-FEB 2018), PP. 56-59

59 | P a g e

[6] Wang, Y., Kelly, T ., Kudlur, M., Lafortune, S. and Mahlke.

S.A.” Gadara: Dynamic Deadlock Avoidance for Multithreaded

Programs”, Proceedings of Eighth USENIX Symposium on

Operating Systems Design and Implementation, pp.281-294,

2008

[7] Rahimalipour, Z. and Haghighat, A.T. “Daemon- Based

Distributed Deadlock Detection and Resolution”, World

Academy of Science, Engineering and Technology, Vol. 63, pp.

339-344, 2010

[8] Ashfield, B., Deugo, D., Oppacher, F. and White, T.

“Distributed Deadlock Detection in Mobile Agent Systems”,

Proceedings of the International Conference on Industrial and

Engineering Applications of Artificial Intelligence and Expert

Systems, pp. 146-156, 2002.

[9] Zhou, J., Chen, X., Dai, H., Cao, J. and Chen, D. “M-Guard: A

New Distributed Deadlock Detection Algorithm Based on

Mobile Agent Technology”, Proceedings of the International

Symposium on Parallel and Distributed Processing with

Applications, pp. 75-84, 2004.

[10] Lu, W., Yang, Y., Wang, L., Xing, W., Che, X., & Chen, L. A

fault tolerant election-based deadlock detection algorithm in

distributed systems. Software Quality Journal, 1-23, 2017.

