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Abstract — The Viterbi algorithm is a maximum-likelihood 

algorithm for decoding of convolution codes used in 

communications such as satellite communication, cellular 

relay, and wireless local area networks. In this paper, 

efficient error detection schemes for architectures based 

on low-latency, low-complexity Viterbi decoders are 

presented. The merit of the proposed schemes is that 

reliability requirements, overhead tolerance, and 

performance degradation limits are embedded in the 

structures and can be adapted accordingly. This paper 

present variants of recomputing with encoded operands, to 

detect both transient and permanent faults, and signature-

based schemes with compare select adder (CSA) unit. The 

adders used in the proposed one is a modified self checking 

adders (MSeCA).The instrumented decoder architecture 

has been subjected to extensive error detection 

assessments through simulations and field programmable 

gate array (FPGA) implementations for benchmark. 

 

Index Terms — Error detection, look-ahead technique, 

recomputing with encoded operands, trellis. 

I.  INTRODUCTION 

 A Viterbi Decoder (VD) is employed to decode the 

convolutional codes, where convolutional codes are commonly 

used to encode digital data before transmission. This Viterbi 

decoder was developed by Andrew J. Viterbi in 1967 This 

algorithm is utilized for decoding the codes used in various 

applications including satellite communication, cellular, and 

radio relay. Moreover, the Viterbi decoder has practical use in 

implementations of high-speed (5 to 10 Gb/s serializer- 

deserializers (SERDESs) which have critical latency 

constraints. SERDESs can be further used in local area and 

synchronous optical networks of 10 Gb/s. Furthermore, they 

are used in magnetic or optical storage systems such as hard 

disk drive or digital video disk. 

The Viterbi algorithm process is similar to finding the most 

likely sequence of states, resulting in sequence of observed 

events and, thus, boasts of high efficiency as it consists of 

finite number of possible states. Viterbi decoders are composed 

of three major components: branch metric unit (BMU), add-

compare-select (ACS) unit, and survivor path memory  unit 

(SMU)[2].BMU generates the metrics corresponding to the 

binary trellis depending on the received signal, which is given 

as input to ACS which, then, updates the path metrics. SMU is 

responsible for managing the survival paths and giving out the 

decoded data as output as shown in Fig.1[3]. BMU and SMU 

units happen to be purely forward logic. 

 
Fig. 1. Basic computation units in Viterbi decoder. 

 

ACS recursion consists of feedback loops. Therefore, the 

speed is limited by the iteration bound [4]. Thus, the ACS unit 

becomes the speed bottleneck for the system. M-step look-

ahead technique can be used to break the iteration bound of the 

Viterbi decoder of constraint length K [5]. A look-ahead 

technique can combine several trellis steps into one trellis step, 

and if M > K, then throughput can be increased by pipelining 

the ACS architecture, which helps in solving the problem of 

iteration bound, and is frequently used in high-speed 

communication systems. Branch metric precomputation (BMP) 

which is in the front end of ACS is resulted due to the look-

ahead technique and it dominates the overall complexity and 

latency for deep look-ahead architectures. BMP consists of 

pipelined registers between every two consecutive steps and 

combines binary trellis of multiple-steps into a single complex 

trellis of one step. Before the saturation of the trellis, only add 

operation is needed. After the saturation of the trellis, add 

operation is followed by compare operation where the parallel 

paths consisting of less metrics are discarded as they are 

considered unnecessary. We summarize the contributions of 

this paper as follows: 

  

• We propose error detection methods for the modified 

Viterbi decoder with the consideration of objectives in terms of 

performance metrics and reliability. The error detection 

approaches along with the modifications help achieving high 

error coverage and through the proposed throughput 

improvements, performance boost can be achieved. Variants of 

recomputing with encoded operands on a number of 
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architectures within the modified Viterbi decoder as well as 

signature-based approaches with modified self-checking adders 

based on two-rail encoding  are presented as well.  

• We have extensively simulated the proposed error 

detection architectures and the obtained results help in 

benchmarking  the error coverage.  

• Finally, our proposed error detection Viterbi decoders 

with modified self checking adders are implemented on field-

programmable gate array (FPGA) [Xilinx Virtex-6 family].The 

proposed approaches can be utilized based on reliability 

objectives and performance/implementation metrics 

degradation tolerance. 

 

II. PRELIMINARIES 

A. Balanced Binary Grouping (BBG) Scheme 

This section only deal with complex trellis branch metric 

computation without considering compare and discard 

operations. An optimal approach of balanced binary grouping 

(BBG)[2] is taken into considerations in order to remove all 

redundancies which are usually responsible for longer delay 

and extra complexity, since various paths share common 

computations. Branch metrics computation is said to be carried 

out sequentially for a conventional Viterbi decoder. When two 

consecutive binary-trellis steps are combined, the computation 

complexity is 4N, where each state has two outgoing branches 

and two incoming branches. In combining two complex trellis 

steps, the complexity can be determined. This decomposition 

removes all redundancy as much as possible and leads to the 

minimal complexity and delay. Because the trellis steps are 

grouped in a balanced binary way, so it refer to the optimal 

approach as BBG.  

 

B. Look-Ahead- Based Low Latency Architectures 

Look-ahead-based approach[9] is a highly-efficient design 

approach based on the BBG[2] scheme for a general M which 

provides less or equal latency, and also has much less 

complexity compared to other existing architectures. For 

constraint length K and M-step look-ahead, the execution of 

BMP is done in a layered manner. An M-step trellis is a bigger 

group consisting of M /K sub-groups with a trellis of K-step. 

Thus, the total numbers of P1 processors needed are M/K and 

each P1 is responsible for computing K step trellises. For P1 

processors, the complexity of add operation is N and that of the 

“compare” operation is N2. Similarly, for P2 processors, the 

complexity of add operation is N2(N − 1) and that of the 

compare operation is N3. However, the complexity of P2 is 

much larger than that of P1, although they have the same 

latency of K. Since the BBG approach is very efficient in 

computing equivalent branch metrics, more operations of trellis 

combination can be allotted into BBG-based P1 processors in 

order to reduce the number of P2 processors as they are 

expensive in terms of complexity. The trellis Steps L, which is 

computed in the P1 processors, has the constraint of being less 

than 2×K in order to make sure that the latency feature is not 

lost. 

 

III. PROPOSED RELIABLE ARCHITECTURES 

In this paper, we utilize recomputing with encoded 

operands, where, the operations are redone for different 

operands for detecting errors. During the first step, operands 

are applied normally. In the recomputed step, the operands are 

encoded and applied and after decoding, the correct results can 

be generated. Moreover, through signature-based schemes[1], 

we propose schemes through which both transient and 

permanent errors can be detected. 

 

A. Unified Signature-Based Scheme for CSA And PCSA 

Units Within BMP 

In order to make the ACS structure fast, parallelization of 

add and compare operations within the ACS itself is done 

(which leads to the reduction of iteration bound delay by 50%). 

For achieving that, the number of states is doubled and the 

channel response is extended by an extra bit. For a complex 

trellis to have P-level parallelism, there should be   parallel 

paths for each branch. For the initial K − 1 steps, there is no 

compare operation, but for the remaining M − K + 1 steps, the 

add operation is followed by a compare operation which helps 

in eliminating parallelism. Add and compare operations need to 

be performed sequentially. For this algorithm, the order of 

operations from add-compare is changed to compare-add and 

that is attributed as a carry-select-add (CSA) unit. The pre-

computed CSA (PCSA) is its speed-optimized type and is 

preferred only for large K and small M values. 

We utilize signature-based prediction schemes for the CSA 

and PCSA units[1]. We note that even a single stuck-at fault in 

such units may lead to erroneous (multi-bit) result (the error 

may also propagate to the circuitry which lies ahead of the 

affected location, with the domino effect propagated system-

wise). Signatures (single-bit, multiple-bit, or interleaved parity, 

cyclic redundancy check, and the like, to name a few) are 

employed in our proposed scheme for all the registers. 

Moreover, a modified self-checking adders (MSeCA) based on 

dual-rail encoding are included for the adder modules. 

As shown in Figs.2 and 3, respectively, in the CSA unit,  there 

exists a single multiplexer whereas for the PCSA unit, the 

original design contains two multiplexers, for which the results 

of the original and the duplicated multiplexers are compared 

using an XOR gate whose output is connected as one of the 

inputs to the OR gate. The input and output registers are 

incorporated with additional signatures, e.g., single-bit, 

multiple-bit, or interleaved parity, cyclic redundancy check, to 

detect faults An OR gate for the units is required to derive the 

error indication flags. The OR gate raises the error indication 

flags (CSA_ Error in case of the CSA unit and PCSA_ Error in 

case of the PCSA unit) in case an error is detected. 
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Fig.2. The CSA signature-based error detection approach (the 

shaded adders are the types of the original ones with the 

proposed error detection schemes).[1] 

 

 

 
Fig. 3. Signature-based PCSA error detection (the shaded 

adders include the proposed error detection schemes).[1] 

 

For the adders included in both CSA and PCSA units[1], 

we use a modified self-checking adders(MSecA). Here, the 

adders based on MUXes are cascaded to implement a self-

checking adder of arbitrary size. For the normal operation, no 

additional delay has resulted due to self-checking feature. The 

checker has two pairs of inputs driven in such a way that in the 

fault free scenario, the outputs are equal pair wise. This is 

performed using XNOR gates and appropriate connections. 

There are two outputs from the checker and the outputs are also 

in two-rail form as the inputs. Even if one of the inputs of the 

checker has a fault, the output is not in two-rail form and, thus, 

an error indication flag is raised to indicate that a fault has been 

incurred in the system. 

 

The adders in both CSA and PCSA designs can also be 

implemented using the modified self-checking adder as shown 

in Fig. 4. In this variant, two n-bit full adders based on 

multiplexers are used to pre compute the sum bits with 

complemented values of carry-in, i.e., 0 and 1, and the original 

value of carry-in is used to select the actual sum bits. We 

employ this new adder in the architectures and evaluate its 

performance and efficiency. Fig.4 shows the design module of 

this variant for self-checking carry-select adder. An important 

modification done in this new adder is the full adder based 

multiplexer operation. For carrying out the implementation for 

n bits, it needs (n − 2) AND gates, (n ) MUXes, (n − 1) XNOR 

gates, (2n) full adders, and (n − 1) two-pair two-rail checkers. 

This proposed the new architecture of full adder (FA) on 

FPGA platform aimed with two optimization goals[6]. The first 

one is to optimize the FA in order to increase the speed. The 

second one is to develop new circuit for FA to enable a 

production with fewer gates. As a result, the proposed design is 

based on the multiplexer, and it only has two kinds of 

components: NOT gate and multiplexer, which makes is the 

design easily implemented on FPGA chip. FA is a basic cell in 

any unit and is so fundamental that changes to it are difficult to 

make. However, this cannot prevent researchers to try to 

increase the speed for FA. A standard FA is based on three 

kinds of gates such as XOR, AND and OR gates. 

 

 
Fig.4. Modified self checking adder utilized in the devised 

approach[1] 

 

Here suggest the use of only 1 or 2 kinds of gates NAND or 

all NOR and NOT to avoid using XOR gate with the aim to 

accelerate FA and reduce the number of gates. Two circuits are 

built for sum and carry-out based on MUX2-1. Those use 

MUX as a switch which is controlled to allow expected values 

to pass through. A circuit is built through a control of values 
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including input x or input y that are shown in Table.1 and 

Fig.5. Similarly, the circuit for carry-out of Addition are 

illustrated in table 2 and Fig.6.  

 

Table.1: Truth table for Sum value [6] 

 

 
 

 
Figure 5: Circuit for Sum: (a) Controlled by Cin & y; (b) 

Controlled by Cin & x[6]. 

Table.2: Truth table for Cout value[6] 

 

 

 
 

Figure 6 Carry-out flag of Addition [6] 

 

B. Recomputing With Encoded Operands For CSA And 

PCSA 

In this section, the error detection CSA and PCSA 

architectures are designed through recomputing with encoded 

operands[1], e.g., RERO, RESO, and variants of RESO, as 

shown in Figs. 7 and 8 with the locations of error detection 

modules shaded. Since this approach takes more number of 

cycles for completion, to alleviate the throughput degradation, 

the architecture is pipelined in the following fashion. First, 

pipeline registers are added to sub-pipeline the architectures, 

assisting in dividing the timing into sub-parts. The original 

operands are fed in during the first cycle. Nonetheless, during 

the second cycle, the second half of the circuit operates on the 

original operands and the first half is fed in with the rotated 

operands. 

For the CSA and PCSA architectures in Figs. 7and 8, we also 

employ RESO and a RESO variant scheme for fault diagnosis. 

Both CSA and PCSA units consist of four inputs, each of them 

are passed in its original form and in the left shifted or rotated 

form to one of the multiplexers. If the select lines of these 

multiplexers are set to the first run, the original operands are 

passed without any change. If these are set to second run, the 

second (modified, i.e., left shifted/rotated) operands are passed.  

For the CSA unit, the inputs are fed to the subtractor and also 

to the multiplexer whose select line is set by the comparator. 

This serves as the design of compare-select unit. The output of 

the multiplexer is replicated and asserted as one of the inputs to 

two adders included in the design. The outputs of both of the 

adders are the outputs of the CSA unit. These are passed 

through the demultiplexers and the outputs of  the 

demultiplexers are compared using an XOR gate, and the error 

indication flag is raised in case of an error. For the PCSA unit, 

the first two inputs are fed to the comparator which acts as the 

select line for the two multiplexers driven by the four adders 

used in the design. The other two inputs in combination with 

the previous inputs are given to the adders. The outputs of the 

two multiplexers are the outputs of the PCSA unit and to 

ensure that they are error-free, the outputs are passed through 

separate demultiplexers. 

 
Fig. 7. Recomputing with encoded operands for CSA.[1] 

 

 
Fig.8 PCSA error detection through recomputing with encoded 

operands[1]. 
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IV. IMPLEMENTATION RESULTS 

The fault coverage of the proposed architectures has been 

assessed by subjecting them to a fault model which considers 

permanent, transient, and single/multiple-bit stuck-at faults. 

The proposed error detection schemes are capable of detecting 

both permanent and transient faults. We inject faults at 

different locations and monitor the error indication flags. We 

have done two simulations and derived the number of detected 

faults for single stuck-at faults for RESO and RERO “only” as 

seen in Table 3. 

 

Table 3.Number of detected faults for single stuck-at faults for 

reso and rero “only” for 500 000 injections[1] 

 

 
 

For FPGA, we use Xilinx ISE 14.7 for different 

architectures. Table 4 shows the CSA benchmark through 

XILINX FPGA family. Table 5 shows Device Utilization 

Summary (estimated values) of modified self checking adder. 

The parameters indicate the number of Slices, LUTs and FF for 

implementing the current design. 

 

Table  4.CSA benchmark through XILINX FPGA family[1] 

 
  

Table 5 Device utilization summary after Modification in self 

checking adder    

Slice Logic Utilization Used  Available 

Number of Slice Registers 5 437600 

Number of Slice LUTs 76 218800 

Number used as Logic 76 218800 

Slice Logic Distribution Used  Available 

Number with an unused Flip 

Flop  

74 79 

Number with an unused  LUT 3 79 

Number of fully used LUT-FF 

pairs 

2 79 

IO Utilization   Used  Available 

Number of bonded IOBs 35 300 

 

 

CONCLUSION 

In this paper, we have presented error detection 

architectures for the CSA and PCSA structures of low-

complexity and low latency Viterbi decoder. The proposed 

approaches are based on signatures and various, fine-tuned 

recomputing with rotated operands. The simulation results for 

the proposed architectures for both CSA and PCSA units show 

very high fault coverage (almost 100 percent) for the utilized 

fault model. Moreover, the FPGA implementation results 

show that overheads obtained are acceptable. One may tailor 

the proposed architectures to have fine-tuned compromise for 

overhead tolerance and reliability requirements. 
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