
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 96-101

96 | P a g e

RECONFIGURABLE HARDWARE DESIGN FOR

HIGH SPEED VITERBI DECODER

ARCHITECTURE
1 SOUBHAGYA SASIKUMAR, 2 JUBY RAJU

1,2 ELECTRONICS AND COMMUNICATION ENGINEERING
1,2 MUSALIAR COLLEGE OF ENGINEERING AND TECHNOLOGY

City, Country PATHANAMTHITTA, KERALA, INDIA
1 soubhagyasasikumar@gmail.com

Abstract — The Viterbi algorithm is a maximum-likelihood

algorithm for decoding of convolution codes used in

communications such as satellite communication, cellular

relay, and wireless local area networks. In this paper,

efficient error detection schemes for architectures based

on low-latency, low-complexity Viterbi decoders are

presented. The merit of the proposed schemes is that

reliability requirements, overhead tolerance, and

performance degradation limits are embedded in the

structures and can be adapted accordingly. This paper

present variants of recomputing with encoded operands, to

detect both transient and permanent faults, and signature-

based schemes with compare select adder (CSA) unit. The

adders used in the proposed one is a modified self checking

adders (MSeCA).The instrumented decoder architecture

has been subjected to extensive error detection

assessments through simulations and field programmable

gate array (FPGA) implementations for benchmark.

Index Terms — Error detection, look-ahead technique,

recomputing with encoded operands, trellis.

I. INTRODUCTION

 A Viterbi Decoder (VD) is employed to decode the

convolutional codes, where convolutional codes are commonly

used to encode digital data before transmission. This Viterbi

decoder was developed by Andrew J. Viterbi in 1967 This

algorithm is utilized for decoding the codes used in various

applications including satellite communication, cellular, and

radio relay. Moreover, the Viterbi decoder has practical use in

implementations of high-speed (5 to 10 Gb/s serializer-

deserializers (SERDESs) which have critical latency

constraints. SERDESs can be further used in local area and

synchronous optical networks of 10 Gb/s. Furthermore, they

are used in magnetic or optical storage systems such as hard

disk drive or digital video disk.

The Viterbi algorithm process is similar to finding the most

likely sequence of states, resulting in sequence of observed

events and, thus, boasts of high efficiency as it consists of

finite number of possible states. Viterbi decoders are composed

of three major components: branch metric unit (BMU), add-

compare-select (ACS) unit, and survivor path memory unit

(SMU)[2].BMU generates the metrics corresponding to the

binary trellis depending on the received signal, which is given

as input to ACS which, then, updates the path metrics. SMU is

responsible for managing the survival paths and giving out the

decoded data as output as shown in Fig.1[3]. BMU and SMU

units happen to be purely forward logic.

Fig. 1. Basic computation units in Viterbi decoder.

ACS recursion consists of feedback loops. Therefore, the

speed is limited by the iteration bound [4]. Thus, the ACS unit

becomes the speed bottleneck for the system. M-step look-

ahead technique can be used to break the iteration bound of the

Viterbi decoder of constraint length K [5]. A look-ahead

technique can combine several trellis steps into one trellis step,

and if M > K, then throughput can be increased by pipelining

the ACS architecture, which helps in solving the problem of

iteration bound, and is frequently used in high-speed

communication systems. Branch metric precomputation (BMP)

which is in the front end of ACS is resulted due to the look-

ahead technique and it dominates the overall complexity and

latency for deep look-ahead architectures. BMP consists of

pipelined registers between every two consecutive steps and

combines binary trellis of multiple-steps into a single complex

trellis of one step. Before the saturation of the trellis, only add

operation is needed. After the saturation of the trellis, add

operation is followed by compare operation where the parallel

paths consisting of less metrics are discarded as they are

considered unnecessary. We summarize the contributions of

this paper as follows:

• We propose error detection methods for the modified

Viterbi decoder with the consideration of objectives in terms of

performance metrics and reliability. The error detection

approaches along with the modifications help achieving high

error coverage and through the proposed throughput

improvements, performance boost can be achieved. Variants of

recomputing with encoded operands on a number of

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 96-101

97 | P a g e

architectures within the modified Viterbi decoder as well as

signature-based approaches with modified self-checking adders

based on two-rail encoding are presented as well.

• We have extensively simulated the proposed error

detection architectures and the obtained results help in

benchmarking the error coverage.

• Finally, our proposed error detection Viterbi decoders

with modified self checking adders are implemented on field-

programmable gate array (FPGA) [Xilinx Virtex-6 family].The

proposed approaches can be utilized based on reliability

objectives and performance/implementation metrics

degradation tolerance.

II. PRELIMINARIES

A. Balanced Binary Grouping (BBG) Scheme

This section only deal with complex trellis branch metric

computation without considering compare and discard

operations. An optimal approach of balanced binary grouping

(BBG)[2] is taken into considerations in order to remove all

redundancies which are usually responsible for longer delay

and extra complexity, since various paths share common

computations. Branch metrics computation is said to be carried

out sequentially for a conventional Viterbi decoder. When two

consecutive binary-trellis steps are combined, the computation

complexity is 4N, where each state has two outgoing branches

and two incoming branches. In combining two complex trellis

steps, the complexity can be determined. This decomposition

removes all redundancy as much as possible and leads to the

minimal complexity and delay. Because the trellis steps are

grouped in a balanced binary way, so it refer to the optimal

approach as BBG.

B. Look-Ahead- Based Low Latency Architectures

Look-ahead-based approach[9] is a highly-efficient design

approach based on the BBG[2] scheme for a general M which

provides less or equal latency, and also has much less

complexity compared to other existing architectures. For

constraint length K and M-step look-ahead, the execution of

BMP is done in a layered manner. An M-step trellis is a bigger

group consisting of M /K sub-groups with a trellis of K-step.

Thus, the total numbers of P1 processors needed are M/K and

each P1 is responsible for computing K step trellises. For P1

processors, the complexity of add operation is N and that of the

“compare” operation is N2. Similarly, for P2 processors, the

complexity of add operation is N2(N − 1) and that of the

compare operation is N3. However, the complexity of P2 is

much larger than that of P1, although they have the same

latency of K. Since the BBG approach is very efficient in

computing equivalent branch metrics, more operations of trellis

combination can be allotted into BBG-based P1 processors in

order to reduce the number of P2 processors as they are

expensive in terms of complexity. The trellis Steps L, which is

computed in the P1 processors, has the constraint of being less

than 2×K in order to make sure that the latency feature is not

lost.

III. PROPOSED RELIABLE ARCHITECTURES

In this paper, we utilize recomputing with encoded

operands, where, the operations are redone for different

operands for detecting errors. During the first step, operands

are applied normally. In the recomputed step, the operands are

encoded and applied and after decoding, the correct results can

be generated. Moreover, through signature-based schemes[1],

we propose schemes through which both transient and

permanent errors can be detected.

A. Unified Signature-Based Scheme for CSA And PCSA

Units Within BMP

In order to make the ACS structure fast, parallelization of

add and compare operations within the ACS itself is done

(which leads to the reduction of iteration bound delay by 50%).

For achieving that, the number of states is doubled and the

channel response is extended by an extra bit. For a complex

trellis to have P-level parallelism, there should be parallel

paths for each branch. For the initial K − 1 steps, there is no

compare operation, but for the remaining M − K + 1 steps, the

add operation is followed by a compare operation which helps

in eliminating parallelism. Add and compare operations need to

be performed sequentially. For this algorithm, the order of

operations from add-compare is changed to compare-add and

that is attributed as a carry-select-add (CSA) unit. The pre-

computed CSA (PCSA) is its speed-optimized type and is

preferred only for large K and small M values.

We utilize signature-based prediction schemes for the CSA

and PCSA units[1]. We note that even a single stuck-at fault in

such units may lead to erroneous (multi-bit) result (the error

may also propagate to the circuitry which lies ahead of the

affected location, with the domino effect propagated system-

wise). Signatures (single-bit, multiple-bit, or interleaved parity,

cyclic redundancy check, and the like, to name a few) are

employed in our proposed scheme for all the registers.

Moreover, a modified self-checking adders (MSeCA) based on

dual-rail encoding are included for the adder modules.

As shown in Figs.2 and 3, respectively, in the CSA unit, there

exists a single multiplexer whereas for the PCSA unit, the

original design contains two multiplexers, for which the results

of the original and the duplicated multiplexers are compared

using an XOR gate whose output is connected as one of the

inputs to the OR gate. The input and output registers are

incorporated with additional signatures, e.g., single-bit,

multiple-bit, or interleaved parity, cyclic redundancy check, to

detect faults An OR gate for the units is required to derive the

error indication flags. The OR gate raises the error indication

flags (CSA_ Error in case of the CSA unit and PCSA_ Error in

case of the PCSA unit) in case an error is detected.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 96-101

98 | P a g e

Fig.2. The CSA signature-based error detection approach (the

shaded adders are the types of the original ones with the

proposed error detection schemes).[1]

Fig. 3. Signature-based PCSA error detection (the shaded

adders include the proposed error detection schemes).[1]

For the adders included in both CSA and PCSA units[1],

we use a modified self-checking adders(MSecA). Here, the

adders based on MUXes are cascaded to implement a self-

checking adder of arbitrary size. For the normal operation, no

additional delay has resulted due to self-checking feature. The

checker has two pairs of inputs driven in such a way that in the

fault free scenario, the outputs are equal pair wise. This is

performed using XNOR gates and appropriate connections.

There are two outputs from the checker and the outputs are also

in two-rail form as the inputs. Even if one of the inputs of the

checker has a fault, the output is not in two-rail form and, thus,

an error indication flag is raised to indicate that a fault has been

incurred in the system.

The adders in both CSA and PCSA designs can also be

implemented using the modified self-checking adder as shown

in Fig. 4. In this variant, two n-bit full adders based on

multiplexers are used to pre compute the sum bits with

complemented values of carry-in, i.e., 0 and 1, and the original

value of carry-in is used to select the actual sum bits. We

employ this new adder in the architectures and evaluate its

performance and efficiency. Fig.4 shows the design module of

this variant for self-checking carry-select adder. An important

modification done in this new adder is the full adder based

multiplexer operation. For carrying out the implementation for

n bits, it needs (n − 2) AND gates, (n) MUXes, (n − 1) XNOR

gates, (2n) full adders, and (n − 1) two-pair two-rail checkers.

This proposed the new architecture of full adder (FA) on

FPGA platform aimed with two optimization goals[6]. The first

one is to optimize the FA in order to increase the speed. The

second one is to develop new circuit for FA to enable a

production with fewer gates. As a result, the proposed design is

based on the multiplexer, and it only has two kinds of

components: NOT gate and multiplexer, which makes is the

design easily implemented on FPGA chip. FA is a basic cell in

any unit and is so fundamental that changes to it are difficult to

make. However, this cannot prevent researchers to try to

increase the speed for FA. A standard FA is based on three

kinds of gates such as XOR, AND and OR gates.

Fig.4. Modified self checking adder utilized in the devised

approach[1]

Here suggest the use of only 1 or 2 kinds of gates NAND or

all NOR and NOT to avoid using XOR gate with the aim to

accelerate FA and reduce the number of gates. Two circuits are

built for sum and carry-out based on MUX2-1. Those use

MUX as a switch which is controlled to allow expected values

to pass through. A circuit is built through a control of values

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 96-101

99 | P a g e

including input x or input y that are shown in Table.1 and

Fig.5. Similarly, the circuit for carry-out of Addition are

illustrated in table 2 and Fig.6.

Table.1: Truth table for Sum value [6]

Figure 5: Circuit for Sum: (a) Controlled by Cin & y; (b)

Controlled by Cin & x[6].

Table.2: Truth table for Cout value[6]

Figure 6 Carry-out flag of Addition [6]

B. Recomputing With Encoded Operands For CSA And

PCSA

In this section, the error detection CSA and PCSA

architectures are designed through recomputing with encoded

operands[1], e.g., RERO, RESO, and variants of RESO, as

shown in Figs. 7 and 8 with the locations of error detection

modules shaded. Since this approach takes more number of

cycles for completion, to alleviate the throughput degradation,

the architecture is pipelined in the following fashion. First,

pipeline registers are added to sub-pipeline the architectures,

assisting in dividing the timing into sub-parts. The original

operands are fed in during the first cycle. Nonetheless, during

the second cycle, the second half of the circuit operates on the

original operands and the first half is fed in with the rotated

operands.

For the CSA and PCSA architectures in Figs. 7and 8, we also

employ RESO and a RESO variant scheme for fault diagnosis.

Both CSA and PCSA units consist of four inputs, each of them

are passed in its original form and in the left shifted or rotated

form to one of the multiplexers. If the select lines of these

multiplexers are set to the first run, the original operands are

passed without any change. If these are set to second run, the

second (modified, i.e., left shifted/rotated) operands are passed.

For the CSA unit, the inputs are fed to the subtractor and also

to the multiplexer whose select line is set by the comparator.

This serves as the design of compare-select unit. The output of

the multiplexer is replicated and asserted as one of the inputs to

two adders included in the design. The outputs of both of the

adders are the outputs of the CSA unit. These are passed

through the demultiplexers and the outputs of the

demultiplexers are compared using an XOR gate, and the error

indication flag is raised in case of an error. For the PCSA unit,

the first two inputs are fed to the comparator which acts as the

select line for the two multiplexers driven by the four adders

used in the design. The other two inputs in combination with

the previous inputs are given to the adders. The outputs of the

two multiplexers are the outputs of the PCSA unit and to

ensure that they are error-free, the outputs are passed through

separate demultiplexers.

Fig. 7. Recomputing with encoded operands for CSA.[1]

Fig.8 PCSA error detection through recomputing with encoded

operands[1].

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 96-101

100 | P a g e

IV. IMPLEMENTATION RESULTS

The fault coverage of the proposed architectures has been

assessed by subjecting them to a fault model which considers

permanent, transient, and single/multiple-bit stuck-at faults.

The proposed error detection schemes are capable of detecting

both permanent and transient faults. We inject faults at

different locations and monitor the error indication flags. We

have done two simulations and derived the number of detected

faults for single stuck-at faults for RESO and RERO “only” as

seen in Table 3.

Table 3.Number of detected faults for single stuck-at faults for

reso and rero “only” for 500 000 injections[1]

For FPGA, we use Xilinx ISE 14.7 for different

architectures. Table 4 shows the CSA benchmark through

XILINX FPGA family. Table 5 shows Device Utilization

Summary (estimated values) of modified self checking adder.

The parameters indicate the number of Slices, LUTs and FF for

implementing the current design.

Table 4.CSA benchmark through XILINX FPGA family[1]

Table 5 Device utilization summary after Modification in self

checking adder

Slice Logic Utilization Used Available

Number of Slice Registers 5 437600

Number of Slice LUTs 76 218800

Number used as Logic 76 218800

Slice Logic Distribution Used Available

Number with an unused Flip

Flop

74 79

Number with an unused LUT 3 79

Number of fully used LUT-FF

pairs

2 79

IO Utilization Used Available

Number of bonded IOBs 35 300

CONCLUSION

In this paper, we have presented error detection

architectures for the CSA and PCSA structures of low-

complexity and low latency Viterbi decoder. The proposed

approaches are based on signatures and various, fine-tuned

recomputing with rotated operands. The simulation results for

the proposed architectures for both CSA and PCSA units show

very high fault coverage (almost 100 percent) for the utilized

fault model. Moreover, the FPGA implementation results

show that overheads obtained are acceptable. One may tailor

the proposed architectures to have fine-tuned compromise for

overhead tolerance and reliability requirements.

REFERENCES

[1] Mehran Mozaffari Kermani and Reza Azarderakhsh, “Reliable

Low-Latency Viterbi Algorithm Architectures Benchmarked on

ASIC and FPGA,” IEEE Transactions on Circuits and Systems

I: Regular Papers,Volume: 64, Page(s): 208 – 216, October

2016.

[2] R. Liu and K. Parhi, “Low-latency low-complexity architectures

for Viterbi decoders,” IEEE Trans. Circuits Syst. I, Reg. Papers,

vol. 56, no. 10, pp. 2315–2324, Oct. 2009.

[3] K. Parhi, “An improved pipelined MSB-first add-compare select

unit structure for Viterbi decoders,” IEEE Trans. Circuits Syst. I,

Reg. Papers, vol. 51, no. 3, pp. 504–511, Mar. 2004.

[4] K. K. Parhi, VLSI Digital Signal Processing Systems: Design

and Implementation. Hoboken, NJ, USA: Wiley, 1999.

[5] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm

implementation: Breaking the ACS-bottleneck,” IEEE Trans.

Commun., vol. 37, no. 8, pp. 785–790, Aug. 1989.

[6] Tranbichthuan Pham, Yi Wang, Li Renfa “Designing one-bit

Full-Adder/Subtractor based on Multiplexer and LUTs

architecture on FPGA,” FPGA International Journal of Digital

Content Technology and its Applications , April 2013 .

[7] T. Gemmeke, M. Gansen, and T. Noll, “Implementation of

scalable power and area efficient high-throughput Viterbi

decoders,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 941–

948, 2002.

[8] A. Yeung and J. Rabaey, “A 210 Mb/s radix-4 bit-level

pipelined Viterbi decoder,” in Proc. IEEE Conf. Int. Solid-State

Circuits, Feb. 1995, pp. 88–89.

[9] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Efficient

fault diagnosis schemes for reliable lightweight cryptographic

ISO/IEC standard CLEFIA benchmarked on ASIC and FPGA,”

IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5925–5932,

2013.

[10] J. J. Kong and K. K. Parhi, “Low-latency architectures for high-

throughput rate Viterbi decoders,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 12, no. 6, pp. 642–651, Jun.

2004.

[11] D. Vasudevan, P. Lala, and J. Parkerson, “Self-checking carry-

select adder design based on two-rail encoding,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 54, no. 12, pp. 2696–2705,

Dec. 2007.

[12] M. Akbar and J.-A. Lee, “Comments on ‘self-checking carry-

select adder design based on two-rail encoding’,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 61, no. 7, pp. 2212–2214, Jul.

2014.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 96-101

101 | P a g e

[13] M. Nicolaidis, “Carry checking/parity prediction adders and

ALUs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.

11, no. 1, pp. 121–128, Jan. 2003.

[14] C.-H. Yen and B.-F. Wu, “Simple error detection methods for

hardware implementation of advanced encryption standard,”

IEEE Trans. Comput., vol. 55, no. 6, pp. 720–731, Jun. 2006.

[15] T. G. Malkin, F. Standaert, and M. Yung, “A comparative

cost/security analysis of fault attack countermeasures,” in Proc.

Int. Workshop, Fault Diagnosis Tolerance Cryptography, 2006,

pp. 159–172.

[16] M. Mozaffari-Kermani, R. Azarderakhsh, and A. Aghaie,

“Reliable and error detection architectures of Pomaranch for

false-alarm-sensitive cryptographic applications,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 12, pp.

2804–2812, Dec. 2015.

[17] M. Mozaffari Kermani and R. Azarderakhsh, “Reliable hash

trees for post-quantum stateless cryptographic hash-based

signatures,” in Proc. IEEE Int. Symp. Defect Fault Tolerance

VLSI Syst. (DFT), Oct. 2015, pp. 103–108.

[18] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Concurrent

structure independent fault detection schemes for the advanced

encryption standard,” IEEE Trans. Comput., vol. 59, no. 5, pp.

608–622, May 2010.

