INTUITIONISTIC FUZZY QUASI RGA-OPEN AND INTUITIONISTIC FUZZY QUASI RGA-CLOSED MAPPINGS

Jyoti Pandey Bajpai, S.S. Thakur
Department of Applied Mathematics
Jabalpur Engineering College
Jabalpur (M.P.) 482011, INDIA
jyotipbajpai@rediffmail.com
samaj_singh@rediffmail.com

Abstract: An intuitionistic fuzzy set A is said to be intuitionistic fuzzy rga-closed [21] in intuitionistic fuzzy topological spaces if cl(A) ⊆ U whenever A ⊆ U and U is intuitionistic fuzzy regular α-open in X. In this paper we introduce quasi rga-open mapping from intuitionistic fuzzy topological space X to intuitionistic fuzzy topological Y as the image of every intuitionistic fuzzy rga-open set is intuitionistic fuzzy open. Also we obtain its Characterization and basic properties.

Keywords: Intuitionistic fuzzy rga-closed set, intuitionistic fuzzy rga-open sets, intuitionistic fuzzy rga-continuous mappings, intuitionistic fuzzy quasi rga-open mappings, intuitionistic fuzzy quasi rga-closed mappings.

I. INTRODUCTION

Mapping plays an important role in study of modern mathematics, especially in Topology and Functional Analysis. Closed and open mapping are one such mapping which are studied for different type of closed sets by various mathematicians for the past many years. The concept of intuitionistic fuzzy sets was introduced by Atanassov [1] as a generalization of fuzzy sets. In 1997 Coker [5] introduced the concept of intuitionistic fuzzy topological spaces. In 2008, Thakur and Chaturvedi [14] introduced the notion of intuitionistic fuzzy generalized closed set in intuitionistic fuzzy topological space. Since then different mathematicians worked and studied in different forms of intuitionistic fuzzy g-closed set and related topological properties. The authors of the paper introduced the concepts of intuitionistic fuzzy sg-closed sets [7], intuitionistic fuzzy sg-continuous mappings[17], intuitionistic fuzzy sg-irresolute mappings[18], intuitionistic fuzzy rw-closed sets[20], intuitionistic fuzzy w-closed sets[19], intuitionistic fuzzy rga-closed sets[21], intuitionistic fuzzy rga-continuity [8], intuitionistic fuzzy gpr-closed sets[22], intuitionistic fuzzy gpr open and gpr-closed mappings [9], intuitionistic fuzzy g-open and g-closed mappings [16], intuitionistic fuzzy sg-open and sg-closed mappings [11] in intuitionistic fuzzy topology. In this paper we will continue the study of related concepts by involving intuitionistic fuzzy rga-open sets. We introduce and characterize the concepts of intuitionistic fuzzy quasi rga-open and intuitionistic fuzzy quasi rga-closed mappings.

II. PRELIMINARIES

1. Definition 2.1: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, 3) is called:

(a) Intuitionistic fuzzy g-closed if cl(A) ⊆ O whenever A ⊆ O and O is intuitionistic fuzzy open.[14]
(b) Intuitionistic fuzzy g-open if its complement Aᶜ is intuitionistic fuzzy g-open.[14]
(c) Intuitionistic fuzzy sg-closed if cl(A) ⊆ O whenever A ⊆ O and O is intuitionistic fuzzy regular open.[7]
(d) Intuitionistic fuzzy sg-open if its complement Aᶜ is intuitionistic fuzzy sg-open.[7]
(e) Intuitionistic fuzzy w-closed if cl(A) ⊆ O whenever A ⊆ O and O is intuitionistic fuzzy semi open.[19]
(f) Intuitionistic fuzzy w-open if its complement Aᶜ is intuitionistic fuzzy w-open.[19]
(g) Intuitionistic fuzzy rw-closed if cl(A) ⊆ O whenever A ⊆ O and O is intuitionistic fuzzy regular semi open.[20]
(h) Intuitionistic fuzzy rw-open if its complement Aᶜ is intuitionistic fuzzy rw-open.[20]
(i) Intuitionistic fuzzy gpr-closed if pcl(A) ⊆ O whenever A ⊆ O and O is intuitionistic fuzzy regular open.[22]
(j) Intuitionistic fuzzy gpr-open if its complement Aᶜ is intuitionistic fuzzy gpr-open.[22]
(k) Intuitionistic fuzzy rga-closed if cl(A) ⊆ O whenever A ⊆ O and O is intuitionistic fuzzy regular alpha open.[21]
(l) Intuitionistic fuzzy rga-open if its complement Aᶜ is intuitionistic fuzzy rga-open.[21]
Definition 2.2 [21] The $\text{rga} - \text{interior}$ and $\text{rga} - \text{closure}$ of an intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, \mathcal{S}) respectively denoted by $\text{rgaint}(A)$ and $\text{rgacl}(A)$ are defined as follows:

- $\text{rgaint}(A) = \bigcup \left\{ V : V \subseteq A, V \text{ is intuitionistic fuzzy open set in } X \right\}$
- $\text{rgacl}(A) = \bigcap \left\{ F : A \subseteq F, F \text{ is intuitionistic fuzzy gpr - open, } \text{sg - open, } \text{gpr - open, } \text{quasi gpr - open, } \text{rw - open set in } X \right\}$

Definition 2.3 [6]: Let (X, \mathcal{S}) and (Y, σ) be two intuitionistic fuzzy topological spaces and let $f : X \rightarrow Y$ be a function. Then f is said to be

(a) Intuitionistic fuzzy g-continuous if the pre image of every intuitionistic fuzzy open set of Y is an intuitionistic fuzzy open set in X.
(b) Intuitionistic fuzzy g-closed if the image of each intuitionistic fuzzy closed set in X is an intuitionistic fuzzy closed set in Y.
(c) Intuitionistic fuzzy w-closed if the image of each intuitionistic fuzzy w-open set in X is an intuitionistic fuzzy w-open set in Y.
(d) Intuitionistic fuzzy gpr -continuous if the pre image of every intuitionistic fuzzy gpr - closed set in Y is an intuitionistic fuzzy gpr - closed set in X.
(e) Intuitionistic fuzzy quasi gpr -continuous if the pre image of every intuitionistic fuzzy quasi gpr - closed set in Y is an intuitionistic fuzzy quasi gpr - closed set in X.
(f) Intuitionistic fuzzy rgpr -continuous if the pre image of every intuitionistic fuzzy rgpr - closed set in Y is an intuitionistic fuzzy rgpr - closed set in X.
(g) Intuitionistic fuzzy gw -continuous if the pre image of every intuitionistic fuzzy gw - closed set in Y is an intuitionistic fuzzy gw - closed set in X.
(h) Intuitionistic fuzzy w -continuous if the pre image of every intuitionistic fuzzy w - closed set in Y is an intuitionistic fuzzy w - closed set in X.
(i) Intuitionistic fuzzy w -open if image of every open set of X is intuitionistic fuzzy w -open in Y.
(j) Intuitionistic fuzzy w-closed if image of every closed set of X is intuitionistic fuzzy w-closed in Y.
(k) Intuitionistic fuzzy gpr -continuous if the pre image of every intuitionistic fuzzy gpr - closed set in Y is an intuitionistic fuzzy gpr - closed set in X.
(l) Intuitionistic fuzzy gpr -open if image of every open set of X is intuitionistic fuzzy gpr -open in Y.
(m) Intuitionistic fuzzy gpr -closed if image of every closed set of X is intuitionistic fuzzy gpr-closed in Y.
(n) Intuitionistic fuzzy rgpr-continuous if the pre image of every intuitionistic fuzzy closed set in Y is an intuitionistic fuzzy rgpr-closed in X.
(o) Intuitionistic fuzzy rgpr-open if image of every open set of X is intuitionistic fuzzy rgpr-open in Y.
(p) Intuitionistic fuzzy rgpr-closed if image of every closed set of X is intuitionistic fuzzy rgpr-closed in Y.

Definition 2.5: [10] A mapping $f : (X, \mathcal{S}) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy quasi rw-open if the image of every intuitionistic fuzzy rw-open set of X is intuitionistic fuzzy open set in Y.

Definition 2.6: [10] A mapping $f : (X, \mathcal{S}) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy quasi rw-closed if image of every intuitionistic fuzzy rw-closed set of X is intuitionistic fuzzy closed set in Y.

III. INTUITIONISTIC FUZZY QUASI -OPEN MAPPINGS.

Definition 3.1: A mapping $f : (X, \mathcal{S}) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy quasi $\text{rga} - \text{open}$ if the image of every intuitionistic fuzzy $\text{rga} - \text{open}$ set of X is intuitionistic fuzzy open set in Y.

Theorem 3.1: A mapping $f : (X, \mathcal{S}) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy quasi $\text{rga} - \text{open}$ and if only if for every intuitionistic fuzzy $\text{rga} - \text{open}$ set U of X $f(\text{rga int}(U)) \subseteq \text{int}(f(U))$.

Proof: Necessity Let f be an intuitionistic fuzzy quasi $\text{rga} - \text{open}$ mapping and U is an intuitionistic fuzzy open set in X. Now $\text{int}(U) \subseteq U$ which implies that $f(\text{int}(U)) \subseteq f(U)$. Since f is an intuitionistic fuzzy quasi $\text{rga} - \text{open}$ mapping, $f(\text{rga int}(U))$ is intuitionistic fuzzy open set in Y such that $f(\text{rga int}(U)) \subseteq f(U)$ therefore $f(\text{rga int}(U)) \subseteq \text{int}(f(U))$.

Sufficiency: For the converse suppose that U is an intuitionistic fuzzy $\text{rga} - \text{open}$ set of X. Then $f(U) = f(\text{rga int}(U)) \subseteq \text{int}(f(U))$. But $\text{int}(f(U)) \subseteq f(U)$. Consequently $f(U) = \text{int}(f(U))$ which implies that $f(U)$ is an intuitionistic fuzzy open set of Y and hence f is an intuitionistic fuzzy quasi $\text{rga} - \text{open}$ mapping.

Theorem 3.2: If $f : (X, \mathcal{S}) \rightarrow (Y, \sigma)$ is an intuitionistic fuzzy quasi $\text{rga} - \text{open}$ mapping then $\text{rga int}(f^{-1}(G)) \subseteq f^{-1}(\text{int}(G))$ for every intuitionistic fuzzy set G of Y.

Proof: Let G is an intuitionistic fuzzy set of Y. Then $\text{rgaint}(f^{-1}(G))$ is an intuitionistic fuzzy $\text{rga} - \text{open}$ set in X. Since f is intuitionistic fuzzy quasi $\text{rga} - \text{open}$ mapping $f(\text{rga int}(f^{-1}(G)))$ is intuitionistic fuzzy open in Y and hence by theorem 3.1 $f(\text{rga int}(f^{-1}(G))) \subseteq \text{int}(f(f^{-1}(G))) \subseteq \text{int}(G)$ Thus $\text{rga int}(f^{-1}(G)) \subseteq f^{-1}((\text{int}(G))$.

Theorem 3.3: A mapping $f : (X, \mathcal{S}) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy quasi $\text{rga} - \text{open}$ if and only if for each intuitionistic fuzzy set S of X and for each intuitionistic fuzzy $\text{rga} - \text{open}$ set U of X containing $f^{-1}(S)$ there is an intuitionistic fuzzy closed set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Necessity: Suppose that f is an intuitionistic fuzzy quasi $\text{rga} - \text{open}$ mapping. Let S be the intuitionistic fuzzy set
of Y and U is an intuitionistic fuzzy rga -closed set of X such that $f^{-1}(S) \subset U$. Then $V = (f^{-1}(U))^c$ is intuitionistic fuzzy closed set of Y such that $f^{-1}(V) \subseteq U$.

Sufficiency: Suppose that F is an intuitionistic fuzzy rga -open set of X. Then $f^{-1}(f(F)^c) \subseteq F$ and F is intuitionistic fuzzy rga -closed set in X. By hypothesis there is an intuitionistic fuzzy closed set V of Y such that $(f^{-1}(U))^c \subseteq V$ and $f^{-1}(V) \subseteq F$. Therefore $F \subseteq (f^{-1}(V))^c$. Hence $V \subseteq f(V) \subseteq f((f^{-1}(V))^c) \subseteq V$ which implies $f(V) = V$. Since V is intuitionistic fuzzy open set of Y. Hence $f(F)$ is intuitionistic fuzzy open in Y and thus f is an intuitionistic fuzzy quasi rga -open mapping.

Theorem 3.4: An intuitionistic fuzzy mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is an intuitionistic fuzzy quasi rga -open mapping if and only if $f^{-1}(cl(B)) \subseteq rga cl(f^{-1}(B))$ for every intuitionistic fuzzy set B of intuitionistic fuzzy topological space Y.

Proof: Suppose that f is intuitionistic fuzzy quasi rga -open for any intuitionistic fuzzy set B of intuitionistic fuzzy topological space Y. Now rga $cl(f^{-1}(B))$ is intuitionistic fuzzy rga -closed set in X such that $f^{-1}(cl(B)) \subseteq rga cl(f^{-1}(B))$. Therefore by theorem 3.3 there exists an intuitionistic fuzzy closed set F in X such that $B \subseteq F$ and $f^{-1}(F) \subseteq rga cl(f^{-1}(B))$. Therefore we obtain $f^{-1}(cl(B)) \subseteq f^{-1}(F) \subseteq rga cl(f^{-1}(B))$.

Sufficiency: Let $B \subseteq Y$ and F is intuitionistic fuzzy rga -closed set of X containing $f^{-1}(B)$. Put $W = cl(B)$ then we have $B \subseteq W$ and W is intuitionistic fuzzy closed set in Y such that $f^{-1}(W) \subseteq rga cl(f^{-1}(B)) \subseteq W$. Then by theorem 3.3 f is intuitionistic fuzzy quasi rga -open.

Theorem 3.5: If $f : (X, \tau) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \mu)$ be two intuitionistic fuzzy mappings and $gof : (X, \tau) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi rga -open. If g is intuitionistic fuzzy continuous then f is intuitionistic fuzzy quasi rga -open.

Proof: Let U be an intuitionistic fuzzy rga -open set in X then $gof(U)$ is open in Z. Since $gof : (X, \tau) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi rga -open mapping. Again $g : (Y, \sigma) \rightarrow (Z, \mu)$ is intuitionistic fuzzy continuous and $gof(U)$ is intuitionistic fuzzy open in Z. Therefore $g^{-1}(gof(U)) = f(U)$ is intuitionistic fuzzy open in X. This shows that f is intuitionistic fuzzy quasi rga-open mapping.

IV. INTUITIONISTIC FUZZY QUASI RGA -CLOSED MAPPINGS.

Definition 4.1: A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy quasi rga-closed if image of every intuitionistic fuzzy rga -closed set of X is intuitionistic fuzzy closed set in Y.

Theorem 4.1: A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy quasi rga-closed if and only if for each intuitionistic fuzzy set S of Y and for each intuitionistic fuzzy rga -open set U of X containing $f^{-1}(S)$ there is an intuitionistic fuzzy open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof Necessity: Suppose that f is an intuitionistic fuzzy quasi rga -closed mapping. Let S be the intuitionistic fuzzy closed set of Y and U is an intuitionistic fuzzy rga -open set of X such that $f^{-1}(S) \subseteq U$. Then $V = Y - f^{-1}(U)^c$ is intuitionistic fuzzy open set of Y such that $f^{-1}(V) \subseteq U$.

Sufficiency: For the converse suppose that F is an intuitionistic fuzzy rga -closed set of X. Then $(f(F))^c$ is an intuitionistic fuzzy set of Y and F is intuitionistic fuzzy rga -open set in X such that $f^{-1}((f(F))^c) \subseteq F$. By hypothesis there is an intuitionistic fuzzy open set V of Y such that $f^{-1}(V)^c \subseteq V$ and $f^{-1}(V) \subseteq F$. Therefore $F \subseteq (f^{-1}(V))^c$. Hence $V \subseteq f(V) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(V) = V^c$. Since V^c is intuitionistic fuzzy closed set of Y. Hence $f(F)$ is intuitionistic fuzzy closed in Y and thus f is intuitionistic fuzzy quasi rga-closed mapping.

Theorem 4.2: If $f : (X, \tau) \rightarrow (Y, \sigma)$ is an intuitionistic fuzzy quasi rga-closed mapping and $g : (Y, \sigma) \rightarrow (Z, \mu)$ are intuitionistic fuzzy closed mapping. Then $gof : (X, \tau) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi rga-closed mapping.

Proof: Let H be an intuitionistic fuzzy rga-closed set of intuitionistic fuzzy topological space (X, τ). Then $f(H)$ is intuitionistic fuzzy closed set of (Y, σ). Because f is intuitionistic fuzzy quasi rga-closed mapping. Now $(gof)(H) = (g(H))$ is intuitionistic fuzzy closed set in intuitionistic fuzzy topological space (Z, μ) because g is intuitionistic fuzzy closed map. Thus $gof : (X, \tau) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi rga-closed mapping.

Theorem 4.3: If $f : (X, \tau) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy rga -closed mapping and $g : (Y, \sigma) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi rga -closed mapping. Then $gof : (X, \tau) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi rga-closed.

Proof: Let H be an intuitionistic fuzzy rga-closed set of intuitionistic fuzzy topological space (X, τ). Then $f(H)$ is intuitionistic fuzzy rga-closed set of (X, τ). If $(gof)(H) = (g(H))$ is intuitionistic fuzzy rga-closed mapping. Now $(gof)(H) = (g(H))$ is intuitionistic fuzzy rga-closed set in intuitionistic fuzzy topological space (Z, μ) because g is intuitionistic fuzzy quasi rga-closed map. Thus $gof : (X, \tau) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi rga-closed.

Definition 4.2: A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is intuitionistic fuzzy rga-closed if image of every intuitionistic fuzzy rga-closed set of X is intuitionistic fuzzy rga-closed set in Y.

Theorem 4.4: Let $f : (X, \tau) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \mu)$ are intuitionistic fuzzy mapping . Then

(a) If f is intuitionistic fuzzy quasi rga-closed and g is intuitionistic fuzzy rga -closed , then $gof : (X, \tau) \rightarrow (Z, \mu)$ is intuitionistic fuzzy rga-closed.

(b) If f is intuitionistic fuzzy quasi rga -closed and g is intuitionistic fuzzy quasi rga closed , then $gof : (X, \tau) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi rga-closed.

Proof: (a) Let H be an intuitionistic fuzzy rga-closed set of intuitionistic fuzzy topological space (X, τ). Then $f(H)$ is intuitionistic fuzzy closed set of (Y, σ). Because f is intuitionistic fuzzy quasi rga-closed mapping. Now $(gof)(H) = (g(H))$ is intuitionistic fuzzy rga-closed set in intuitionistic fuzzy topological space (Z, μ) because g is intuitionistic fuzzy quasi rga-closed mapping. Thus $gof : (X, \tau) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi rga-closed.
(b) Let H be an intuitionistic fuzzy α-closed set of intuitionistic fuzzy topological space (X, \mathcal{I}). Then $f(H)$ is intuitionistic fuzzy α-closed set of (Y, σ) because f is intuitionistic fuzzy α-closed map. Now $(gof)(H) = g(f(H))$ is intuitionistic fuzzy closed set in intuitionistic fuzzy topological space Z because g is intuitionistic fuzzy quasi α-closed mapping. Thus gof: $(X, \mathcal{I}) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi α-closed.

Theorem 4.5: Let f: $(X, \mathcal{I}) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \mu)$ are intuitionistic fuzzy mapping such that gof: $(X, \mathcal{I}) \rightarrow (Z, \mu)$ is intuitionistic fuzzy quasi α-closed. If g is intuitionistic fuzzy α-continuous then f is intuitionistic fuzzy α-closed.

Proof: Suppose H is intuitionistic fuzzy α-closed set in X. Since gof is intuitionistic fuzzy quasi α-closed $gof(H)$ is intuitionistic fuzzy closed in Z. Since g is intuitionistic fuzzy α-continuous $g^{-1}(gof(H)) = f(H)$ is intuitionistic fuzzy α-closed in Y. Hence f is intuitionistic fuzzy α-closed.

References