DESIGN AND IMPLEMENTATION OF ADVANCED MULTILEVEL PRIORITY PACKET SCHEDULING SCHEME

A.VANI, D. Madhu Babu
Dept of ECE
CBIT
Hyderabad, India
vanialamur@yahoo.in, madhubabud4u@gmail.com

Abstract— Scheduling different types of packets, such as real-time and non-real-time data packets, at sensor nodes with resource constraints in Wireless Sensor Networks (WSN) is of vital importance to reduce sensors’ energy consumptions and end-to-end data transmission delays. Most of the existing packet-scheduling mechanisms of WSN use First Come First Served (FCFS), non pre-emptive priority and pre-emptive priority scheduling algorithms. These algorithms incur a high processing overhead and long end-to-end data transmission delay due to the FCFS concept, starvation of high priority real-time data packets due to the transmission of a large data packet in non pre-emptive priority scheduling, starvation of non-real-time data packets due to the probable continuous arrival of real-time data in pre-emptive priority scheduling, and improper allocation of data packets to queues in multilevel queue scheduling algorithms. Moreover, these algorithms are not dynamic to the changing requirements of WSN applications since their scheduling policies are predetermined.

In the Advanced Multilevel Priority packet scheduling scheme, each node except those at the last level has three levels of priority queues. According to the priority of the packet and availability of the queue, node will schedule the packet for transmission. Due to separated queue availability, packet transmission delay is reduced. Due to reduction in packet transmission delay, node can go into sleep mode as soon as possible. And Expired packets are deleted at the particular node at itself before reaching the base station, so that processing burden on the node is reduced. Thus, energy of the node is saved.

Index Terms—Wireless sensor network, FCFS, CSMA, Q-MAC

I. INTRODUCTION

The communications in the WSN has the many-to-one property in that data from a large number of sensor nodes tend to be concentrated into a few sinks. Since multi-hop routing is generally needed for distant sensor nodes from the sinks to save energy, the nodes near a sink can be burdened with relaying a large amount of traffic from other nodes. Sensor nodes are resource constrained in term of energy, processor and memory and low range communication and bandwidth. Limited battery power is used to operate the sensor nodes and is very difficult to replace or recharge it, when the nodes die. This will affect the network performance. Energy consumption and harvesting increase the lifetime of the network. Optimize the communication range and minimize the energy usage. Sensor nodes are deployed to gather information and desired that all the nodes works continuously and transmit information as long as possible. This addresses the lifetime problem in wireless sensor networks. Sensor nodes spend their energy during transmitting the data, receiving and relaying packets. Hence, designing routing algorithms that maximize the lifetime time until the first battery expires is an important consideration designing energy aware algorithms increase the lifetime of sensor nodes. In some applications the network size is larger required scalable architectures. Energy conservation in wireless sensor networks has been the primary objective [2], but however, this constrain is not the only consideration for efficient working of wireless sensor networks. There are other objectives like scalable architecture, routing and latency. In most of the applications of wireless sensor networks are envisioned to handled critical scenarios where data retrieval time is critical, i.e., delivering information of each individual node as fast as possible to the base station becomes an important issue.

II. RELATED WORK

To fulfill the objectives of the thesis, understanding the basics of Wireless Sensor Networks and its characteristics is essential. Wireless Sensor Networks Technology, Protocols and Applications [2] (a John Wiley & sons Inc., Publication2007) was referred to understand the basics of wireless sensor networks and its characteristics. This book refers about the concept of wireless sensor networks, characteristics, and applications of the wireless sensor networks. And also refers about the routing protocols for wireless sensor networks. And also described about the different MAC protocols useful in wireless sensor network technology.

In this paper “RAP, new real-time communication architecture for large-scale sensor networks” [3], Authors (Chenyang Lu et al, Brian et al) proposed Velocity Monotonic Scheduling (VMS). VMS assigns the priority of a packet based on its requested velocity. A packet with a higher requested velocity is assigned a higher priority. VMS improves the number of packets that meet their deadlines because it assigns the “right” priorities to packets based on their urgencies on the current hop. But there is no detail for packet arrival distance.

And in this he paper [4], “Extending the Lifetime of Wireless Sensor Networks through Adaptive Sleep”, when the queue is full, higher priority incoming packets overwite lower priority ones. It may problem to be the low priority information. In the paper [4], author Giuseppe et al and Hong et al proposed an Adaptive Staggered SLEEP Protocol (ASLEEP) for efficient power management in wireless sensor networks targeted to periodic data acquisition. This protocol dynamically adjusts the sleep schedules of nodes to match the network demands, even in time-varying operating conditions. It uses the CSMA scheme for process the data, but it may be not efficient in fixed WSN network and there is no detail to data management.

In this paper [5], author presents how to place sensors by use of a minimal number to maximize the coverage area when the communication radius of the SN is not less than the sensing radius, which results in the application of regular topology to
WSNS deployment. In this paper [5] author discussed the details of sensor deployment. Due to optimal coverage sensor deployment, it reduces the no of sensors usage and also increases the lifetime of sensors. But till lifetime of sensor need to increase.

In this paper [6], author proposed a clustering method with coverage and energy aware TDMA scheduling scheme. And the cluster formation is done by the base station according to the current residual energy, and the coverage area of cluster Member is reduced to avoid the congestion and energy management. In this paper there is no discussion on the real time and non-real time packet scheduling.

In this the paper [7] author present a cluster based routing algorithm. One of author’s main goals is to design the energy efficient routing protocol. This algorithm makes the best use of node with low number of cluster head know as super node. Here author divided the full region in equal zones and the center area of the region is used to select for super node. Each zone is considered separately and the zone may be or not divided further that’s depending upon the density of nodes in that zone and capability of the super node. In the paper author considered, cluster head changes when the cluster head is failed. It may be the problem to sensing in that area.

Author Simen et al [8] proposed the two centralized heuristic algorithms: one based on direct node-based scheduling, which is adapted from classical multi-hop scheduling algorithms for general ad hoc networks, and the other based on scheduling the levels in the routing tree before scheduling the nodes, which is a novel scheduling algorithm for many-to-one communication in sensor networks.

In this paper [9], authors propose Q-MAC scheme that provides quality of service by differentiating network services based on priority levels. The priority levels reflect the criticality of data packets originating from different sensor nodes. The Q-MAC accomplishes its task through two steps; intra-node and inter-node scheduling. This paper effectively handled the priority scheduling, but this paper only considered the priority packets and it schedules the priority packet as the first non-priority as second. And in the case of node gives the first priority to own priority data compare than other nodes packet.

Author [10] developed scheme by designing the network with multiple-sized fixed grids while taking into account the arbitrary-shaped area sensed by the sensor nodes. In this paper [10], author Tarandeep et al considers the different initial energy level of sensors, and placed that sensor according to that energy level. So energy loss was avoided. But calculating different initial energy level and placing the node according to that energy level is difficult in real time.

III. Wireless Node Architecture and WSN

A wireless sensor node is capable of gathering information from surroundings, processing and transmitting required data to other nodes in network. The sensed signal from the environment is analog which is then digitized by analog-to-digital converter which is then sent to microcontroller for further processing [5].

The block diagram of a sensing node is shown in figure. While designing the hardware of any sensor node the main feature in consideration is the reduction of power consumption by the node. Most of the power consumption is by the radio subsystem of the sensing node. So the sending of required data over radio network is advantageous. An algorithm is required to program a sensing

Fig 1. Sensor Node Architecture

Characteristics of WSN’s:

- WSN have the following distinctive characteristics:
 - They can be deployed on large scale.
 - These networks are scalable; the only limitation is the bandwidth of gateway node.
 - Wireless sensor networks have the ability to deal with node failures.
 - Another unique feature is the mobility of nodes.
 - They have the ability to survive in different environmental surroundings.

1. Advanced Multi level Priority scheduling scheme

In non pre-emptive packet scheduling schemes, real-time data packets have to wait for completing the transmissions of other non-real-time data packets. On the other hand, in pre-emptive priority scheduling, non real time data will be in the waiting state because of continuous arrival of real time data. This Advanced Multilevel Priority packet scheduling scheme ensures a trade off between priority and fairness. And in existing scheduling schemes, expired packets (Dead Packets) are removed after reaching the base station. But in this method, node will check for the expired packets while processing the data packets and it will delete those packets at the node itself.

Scheduling data packets among several queues of a sensor node is presented in Figure 2. The Advanced Multilevel priority packet scheduling scheme, Nodes are virtually organized following a hierarchical structure. Nodes that are same hop distance from the bases station (BS) are considered to be the same level. Data packets of different levels at nodes are processed using the TDMA Scheme. Nodes that are at lowest level and second lowest levels can be allotted time slots 1 & 2 respectively. In advanced multilevel priority packet scheduling scheme, node has three level of priority queue.

The three priority levels are:

Priority 1: Real time packets have high priority. So these packets will be placed in priority queue level 1 (PR1).
Priority 2: Non Real Time packets which are generated at lower levels have second highest priority to reduce the average waiting time. So these packets are placed in second priority queue level (PR2).

Priority 3: Non Real Time packets which are generated at the local nodes have third highest priority. So these are placed in third highest priority queue level (PR3).

Assigning the priority for the packets depending on the type of the data is shown in the above figure 2. Real packets i.e. emergency data packets has to reach the base station (BS) as soon as possible so that these packets are given high priority compared to the other data packets. Thus, end to end delay for the real time packets is reduced. In the ready queue, Real time data packets are processed using FCFS (First come First serve) method.

Real time data packets are placed in pre-emptive priority queue. Thus these packets on arrival preempt the processing of non real time data packets. And priority2 packets are placed in pre-empt-able queue. The processing of priority1 reduces the end to end delay for the real time packets. If the low priority data do not get processed for a long time then it can preempt the high priority tasks and then starts processing of high priority tasks. [7] And node also monitors the lifetime of the non real time packets, if the lifetime of the packet is less than half of its actual lifetime then node starts processing of those packets to improve the packet delivery probability. The amount of real time tasks is very low when compared to other tasks because real time or emergency data will occur rarely. The operation at the node is shown in the figure3.

Dead Packet Removal

Node compares the life time of the packet with the time packet needs to reach the base station, if it is less than then those packets are considered as dead packets and automatically delete those packets at node itself so that energy efficiency is improved. End to End delay for the remaining packets will be improved by deleting the dead packets.

IV. Algorithm (for packet scheduling)

The main aim of this algorithm is how send task (packet) according to their priority in three types of queue. Considering level also, if data comes from lowest level then giving more priority than local data (which is sensed at intermediate level) then finally consider time slot at particular level.

While(task(k,i)) //task means any packet receiving that node i and K means level

If (that is real time data)

Else if (node at which data sensed that’s not at lowest level) //data also non real data

If (data is non local) //check whether it came from lowest level

Put in PR3 Queue // local data sensed at that node itself

Put in PR2 Queue // local data sensed at that node itself

Put that is in PR1 queue

Else if (data sensed at lowest level)

Put in PR2 Queue

Put in PR3 Queue // local data sensed at that node itself

If (Proctime(Pr1)k < T1(k))

All pr1 tasks of node (i) at level k is processed as FCFS

Remaining Time T1(K) = Tk – Ts

Let total real time task at (NODE)i at level K - nk(pr1)

Proctime(Pr1)k is total time for pr1

If (Proctime(Pr1)k < T1(k))

All pr2 tasks are processed as FCFS

Remaining Time T2(k) = T1(k) - Proctime(Pr1)k

Proctime(Pr2)k is total time for pr2

If (Proctime(Pr2)k < T2(K))

All pr3 tasks are processed as FCFS

Remaining Time T3(k) = T2(k) – proctimepr2(k)

else {//this loop for if pr1 task time greater than Remaining time T2(k)

pr2 tasks are processed for t2(k) time

no pr3 tasks are processed }//end of inner if loop

else {//this loop for if pr1 task time greater than total time slot of that level

only pr1 tasks are processed for T1(k) time

Fig 2. Task Scheduling

Real time data packets are placed in pre-emptive priority queue. Thus these packets on arrival preempt the processing of non real time data packets. And priority2 packets are placed in preempt-able queue. The processing of priority1 reduces the end to end delay for the real time packets. If the low priority data do not get processed for a long time then it can preempt the high priority tasks and then starts processing of high priority tasks. [7] And node also monitors the lifetime of the non real time packets, if the lifetime of the packet is less than half of its actual lifetime then node starts processing of those packets to improve the packet delivery probability. The amount of real time tasks is very low when compared to other tasks because real time or emergency data will occur rarely. The operation at the node is shown in the figure3.

Fig 3. Scheduling Scheme Operation

Each packet has an ID which consists of Level ID and Node ID, when two equal priority packets arrive the node at same time, node process the packet which is coming from the lowest level. Level will be identified by the Level ID. If the two packets having same priority reach the node at the same time, then node starts processing of the packet which is having less size. Node has to process and forward most of the data sensed at the node itself and also the data which is coming from below levels in its allocated time slot to reduce the probability that the ready queue at the node becomes full and also probability of packet drops. And remaining data will be sent in further timeslots. Time slot comprised of data sensing time, data transmission time and CPU Speed. The remaining time of a timeslot at a particular node will be assigned to other
no pr2 and pr3 tasks are processed

If (pr1 queue is empty and pr2 task are processing some time Y since T(K) < Proctimepr2(K))

{ At that time if pr3 task are coming then Pr2 task are pre-empted
 If (any pr1 task coming in this)

 Pr3 task pre-empted and giving priority to Pr1....
 Context are transferred again for processing pr3 tasks

} //end of if
} //end of while

V. RESULTS

The below parameters are assumed while simulation:
No. of mobile nodes = 15
Simulation end = 5sec
Packet size = 1000 bytes
Initial energy of the node = 1000 joules
Queue length = 50 packets
Channel Access scheme = MAC-TDMA
AODV protocol is used for creating the nodes. And minimum distance between the nodes will be calculated to form the route between the sources to destination via nodes.

Results of the Advanced Multilevel Priority Packet scheduling scheme are observed by comparing with the FIFO, multi priority, and hop based multi priority scheduling schemes.

A. Dead Packet Removal

In this scheduling scheme, node monitors the reach time and life time of the packets. And if the reach time is less than the remaining lifetime then node treat them as expired packets and immediately node deletes those packets because there is no use of those packets, their lifetime will be completed before reaching the base station. So that this scheduling scheme provides good performance in terms of end to end delay and waiting time of the packets and energy saving when compared to other schemes. Deletion of expired packets is shown in the figure 5.5. Reach time is calculated by using the below equation,

Reach time = remaining hop count * 10ms

B. Non Real Time Packet delay

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Non Real Time Packet delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO scheme</td>
<td>300 ms</td>
</tr>
<tr>
<td>Priority Based scheme</td>
<td>350 ms</td>
</tr>
<tr>
<td>Hop Based Multi Priority scheme</td>
<td>360 ms</td>
</tr>
<tr>
<td>Advanced Multilevel Priority Scheme</td>
<td>260 ms</td>
</tr>
</tbody>
</table>

C. Real Time Packet Delay

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Real Time Packet delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO scheme</td>
<td>300 ms</td>
</tr>
<tr>
<td>Priority Based scheme</td>
<td>25 ms</td>
</tr>
<tr>
<td>Hop Based Multi Priority scheme</td>
<td>28 ms</td>
</tr>
<tr>
<td>Advanced Multilevel Priority Scheme</td>
<td>26 ms</td>
</tr>
</tbody>
</table>

D. Waiting Time for packets at Node

The comparison of waiting time of the packets at the node for various scheduling schemes is shown in the figure 7. For FIFO scheme, waiting time for real time and non real time packets is equal. In priority scheduling scheme waiting time for non real time packets is much more when compared with the real time packet waiting time. In hop based priority scheduling scheme waiting time for non real time packets is less when compared to the priority based scheduling scheme. In life based priority packet scheduling scheme, waiting time for non real time is reduced when compared to above three methods. And advanced multilevel priority packet scheduling scheme, waiting time for non real time and real time packets is reduce when compared to all the other scheduling schemes.
VI. CONCLUSION AND FUTURE SCOPE

Advanced Multilevel Priority (DMP) packet scheduling scheme for Wireless Sensor Networks (WSN’s). The scheme uses three-level of priority Queues to schedule data packets based on their types and priorities. It ensures minimum end-to-end data transmission End-to-End Delay of all Tasks (microSec) for the highest priority data while exhibiting acceptable fairness towards lowest-priority data. Experimental results show that the proposed DMP packet scheduling scheme has better performance than the existing FCFS and Multilevel Queue Scheduler in terms of the average task waiting time and end to-end. It assigns the priority based on task deadline instead of the shortest task processing time.

As a Future enhancement, by forming the nodes into zones (consisting node levels) based topology, end to end delay further can be reduced and also by using other channel access techniques, deadlock situation can be avoided further.

REFERENCES