AGE-RELATED CHANGES IN HUMAN INTERVERTEBRAL DISCS. A COMPARATIVE LIGHT-MICROSCOPIC, ELECTRON-MICROSCOPIC AND HISTOCHEMICAL STUDY

Georgi P. Georgiev, MD, PhD
Department of Anatomy, Histology and Embryology, Medical University Sofia, blvd. Sv. Georgi Sofiisky 1, BG-1431 Sofia, Bulgaria
georgievgp@yahoo.com

Abstract — The aim of present study is to evaluate age-related changes in human intervertebral discs using light-microscopy, transmission electron microscopy and histochemical techniques. Intervertebral discs from 10 adult human cadavers and 10 patients undergoing spinal surgery due to degenerative diseases of the spinal column, from different age, were examined. Using aforementioned techniques we established diminished number of chondrocytes and apoptosis of cells. Clusters of cells, changes in the lamellar structure, thickness and calcification of intervertebral discs were also found, as well as positive reaction for nicotinamide adenine dinucleotide phosphate-diaphorase, which is a marker for nitric oxide synthase and an indirect marker for nitric oxide, linked with the degenerative changes in the intervertebral disc.

Keywords - Intervertebral disc, Human, Age-related changes, Degenerative changes.

I. INTRODUCTION

The main components of the intervertebral disc (IVD) are nucleus pulposus (NP), annulus fibrosus (AF) and cartilage end plates. The nucleus pulposus is composed of proteoglycans and diffuse networks of collagen fibrillae. The nucleus is surrounded by concentric collagen fibrillae which form AF. The complicated organization of collagen fibers in AF with NP takes part of the perfect biomechanical structure of IVD. With aging this strongly organized lamellar structure changes (Gruber and Hanley, 2002; Landzhov, 2009). Cartilage end plates are parts of IVD, which lie between the vertebral body and annulus fibrosus (Landzhov, 2006a; Landzhov, 2007). They are thin hyaline cartilage plates and form the anatomical and physiological boundary of the disc which facilitates the diffusion of nutrients from the vertebra to the disc. Nutrients and metabolites that supply disc cells pass through the cartilage end plate (Whalen et al., 1985; Urban et al., 2004; Landzhov, 2008). IVD are avascular structures and have a low capacity for regeneration and repair. Because of this the age related changes are particularly definitive and impair normal disc function. This could provoke disc herniation, commonly presented with pain and work disability.

In this article, we investigated the different changes that occurred in the IVD in different age groups using light-microscopic, ultrastuctural and histochemical studies.

II. MATERIALS AND METHODS

The current study includes IVD from humans: 10 from cadavers (between 15 and 85 years old) and 10 from patients with degenerative diseases of the spinal column (between 19 and 75 years old).

Light-microscopic technique

For the light-microscopic study routine was used the light-microscopic Masson technique. The material was fixed in 10% formaldehyde for 3 days. After that the specimens were washed, dehydrated and became brighter. Afterwards they were embedded in paraffin, and cut into 8 microns thick slices. This allowed for the cells and the intercellular matrix to be observed.

Ultrastructural study

The samples were fixed in 3% glutaraldehyde for 2 hours. After that they were rinsed several times with 0.1% phosphate buffer to remove the fixative solution. Afterwards a subsequent incubation was conducted in a 1% osmium tetroxide solution for two hours. Then, the pieces were dehydrated in ethanol (50, 70, 95, 100%). Next, the samples were treated for 30 minutes with a 2:1 mixture of propylene oxide and epon. The pieces were embedded in paraffin, and cut into 8 microns thick slices. This allowed for the cells and the intercellular matrix to be observed.
contrasted with 2.5% uranyl acetate, lead nitrate, and sodium citrate. For observation, electron microscope Hitachi 500 was used.

Histochemical study

For the histochemical examination, the slices were incubated in solution containing 0.2 mg/ml NBT (nitroblautetrazoliumchloride), 1 mg/ml NADPH – tetrainatriumsalt and 0.5 % Triton X – 100 diluted in 0.1 M Tris-HCl buffer with pH 7.4 at 37°C for 30-60 minutes. The reaction was finished with 0.1 M Tris HCl, pH 7.6. Afterwards, the sections were rinsed three times for 5 minutes in the same phosphate buffer, air-dried for 24 hours and coverslipped using Entellan. The result was that NADPH-d stained cells were visible as a blue reaction product inside cells.

III. RESULTS

The morphological changes that we have found and described affect: the intercellular matrix; the distribution, the shapes and number of cells and position, shapes and thickness of collagen fibers.

Light-microscopy clearly presents the age-related changes in localization and number of the cells. Cell density decreased and apoptosis increased. Simultaneous to this increase, the degenerative change occurs in all parts of the disc. Clusters of cells were formed and concentric tears appeared. The quantity of apoptotic cells was greater in older than in younger specimens.

Light-microscopy clearly revealed the typical wavy way of the collagen fibers in young individuals (Fig. 1) and the changes that occur with aging (Fig. 2).

Fig. 1. Light-microscopic photomicrograph of IVD from 25 year old individual. Masson (x 100).

Degenerative changes were observed in the morphology of the cells, confirmed by transmission electron microscopy. Commonly the fibrocytes are flattened, while the chondrocytes are placed in lacunes with normal content and are inserted between and along the collagen fibers (Fig. 3).

Fig. 2. Light-microscopic photomicrograph of IVD from 65 year old individual. Masson (x 100).

In older people the number of lacunar volumes increased (Fig. 4). The changes in the cell population concerned mainly their shape and size.

Fig. 3. Electron-microscopic photomicrograph of IVD from 25 year old individual. (x 2400).

Fig. 4. Electron-microscopic photomicrograph of IVD from 65 year old individual. (x 8400).
The histochemical study revealed greater number of positive NADPH-d cells in degenerated discs (Fig. 5) than in control (Fig. 6) discs.

The quantity of the positive NADPH-d cells increased with the increase of degenerative changes. The lamellas in annulus fibrosus became more disorganized, and the connection between annulus fibrosus and cartilage and plates disrupted. Differences between expressions of NADPH-d positive cells in different parts of the disc were also established. The quantity of the chondrocytes in the outer AF is greater than those in the inner region. On the other hand, many NADPH-d positive cells were observed on the border of the vascular canals. This nitric oxide tends to come from endothelium.

IV. DISCUSSION

The biomechanics of the IVD is closely related with the density and the direction of the collagen fibers of the AF. They have a very typical direction which slowly changes in the different zones of the disc (Buckwalter, 1995; Antoniou et al., 1996; Duance et al., 1998; Eck et al., 1999; Gruber and Hanley, 2002; Landzhov et al., 2005). The annular lamellas are arranged parallelly in several layers. The inner layers surround the periphery of NP. Their directions depend on the degree of the mechanical load of the IVD (Landzhov et al., 2007; Delcheva, 2008; Landzhov et al., 2012a). Outer lamellas’ angle increases according to the longitudinal axis of the disc. The collagen fibers in each lamella have a parallel direction. The direction of the collagen fibers is different in the different zones of the AF (Gathercole and Keller, 1991). The amount of Type I collagen increases, especially in the inner annulus.

Along with this, changes also occur in the number of the cells (Errington et al., 1998; Gruber and Hanley, 2002; Johnson et al., 2001; Bruehlmann et al., 2002; Landzhov et al., 2005). The degenerative changes in AF are often related with the abnormal mechanical load of the spinal column and with changes of the amount of the proteoglycans (Wassilev and Dimova, 1970; Buckwalter, 1995; Antoniou et al., 1996; Duance et al., 1998; Eck et al., 1999; Johnson et al., 2001; Gruber and Hanley, 2002; Landzhov et al., 2006b). Usually these changes also affect the cartilage end plate. There are many studies on laboratory animals (bipedal mouse). After limb amputation are observed changes in the position of the fibers of AF (Wassilev and Dimova, 1970). Even though there are many experiments about this, the relation between the extreme load and the changes in the structure of IVD is still unknown.

As well as the macroscopic changes in the different zones of the disc, the age-related process is also presented with morphological changes (Gruber and Henly, 2002; Landzhov, 2006b; Bocheva et al., 2006; Ovtscharoff et al., 2006). The numbers of cells decrease during the years due to damage of the metabolite transport. Moreover, the cells lose their ability to replicate. It should be depicted that degeneration is difficult to be distinguished from age-related changes. In the literature, there are different theories concerning disc degeneration, but the most popular is that structural damage causes internal disc stresses, which impairs disc cell metabolism (Wassilev and Dimova, 1970; Buckwalter, 1995; Antoniou et al., 1996; Duance et al., 1998; Eck et al., 1999; Gruber and Hanley, 2002; Landzhov et al., 2005; Landzhov, 2007)

In the last years, numerous authors examined the cellular and molecular activity of IVD to understand the pathophysiology of the low back pain (Burke et al., 2002; Landzhov and Stokov, 2007; Landzhov et al., 2008; Hadjipavlou et al., 2008; Landzhov et al., 2012a). Different authors report that there is a correlation between proinflammatory mediators and the production of NO (Brisby et al., 2000; Kohyama et al.; 2000; Furusawa et al., 2001; Dzambazova et al., 2012). NO is a messenger molecule that is synthesized from L-arginine. It is a result of the metabolism of the cells and activates many pathways by diffusing across membranes. It is synthesized from three different enzymes: inducible, endothelial and neuronal (Dzambazova et al., 2012; Hinova-Palova et al., 2014).

The number of positive cells increases with aging and degeneration respectively, as presented by our results. The quantity of NO depends on the types of degenerative diseases
(Johnson et al., 2001; Landzhov et al., 2008; Landzhov et al., 2009; Landzhov et al., 2012b). The material from degenerative discs showed greater number of positive cells than normal control discs. With this we confirm that NO is a molecule that regulates cell metabolism and increases its quantity simultaneously with the increase of cyclic tensile stretch and disc degeneration (Liu et al., 2001; Rannou et al., 2003). According to Hashizume et al. (1997) and Landzhov et al. (2007) the main production of NO comes from newly formed blood capillaries and granulates tissue around them. The increased number of NOS-positive chondrocytes in young individuals is a result of chondrocyte maturation (Teixeira et al., 2005).

V. CONCLUSION

Age-related changes in IVD are one of the main factors for the appearance of low back pain. Often the degeneration starts as a result of abnormal mechanical load. This strength is related with changes in the cells, proteoglycans and collagen fibers, all intercellular and extracellular structures. The process that occurs within IVD with aging is not well-known.

Cluster formations and new blood vessels appear with cell proliferation and degeneration. These changes are very important in order to understand the problems which occur in the disc. The current study presents the morphological changes in the IVD in different ages and gives us a possibility for more precise definition for the complicated changes which happen in the cells and in the intercellular matrix during degenerative diseases.

REFERENCES


