ON SUB RIEMANNIAN STRUCTURES AND RELATED MECHANICS

Sarika M. Patil1, T. VENKATESH2, J.V. RAMANARAJU3
1Department of Mathematics, Government First Grade College, Hubli,
2Department of Mathematics, Rani Channamma University, Belgaum,
3Department of Mathematics, Jain University, Bengaluru, Karnataka State, India

Abstract— This paper deals with certain configuration spaces where the underlying geometry is sub-Riemannian because of the physical constraints arising out of the mechanical systems we are interested in. A motivated introduction to Sub-Riemannian structures is included following which we look at the broad science of mechanics where in the sub-Riemannian geometric study aids us to talk about applications like robotics and image analysis.

Index Terms— Lie group, quaternion group, sub-Riemannian, horizontal distributions

2000 Mathematics Subject Classification: 53C17, 58A30

I. INTRODUCTION

Physical dynamical systems involve a geometric space equipped with a topology and a phase space coming out of operators acting on the space. We consider the functionals arising out of the constrained motions in the Euclidean space E^1. The dynamical systems considered here are tracking the state of the mechanical systems in question, in terms of the local coordinates. The controls applied are on the velocity vectors of the mechanical system which essentially leads to a non-integrable distribution due to a nonholonomic constrained environment. One of the main problems is to determine whether there is a continuous curve tangent to the distribution and connecting any two given points. A sub-Riemannian metric actually solves the optimization problem described here, but the challenge is to choose the correct sub-Riemannian metric among the infinite choices of such a metric. The global connectivity by special kind of curves that are tangent to the distribution can be established by the bracket generating property.

In section 1 we introduce the distributions on a sub-Riemannian manifold and mention the key examples. We also discuss the issue of optimal control in the setting of sub-Riemannian geometry. We then expound in section 2 on the interesting Lie group structures. In section 3 we come to the mechanical set-up where we apply the geometric/topological theory to some interesting problems. We conclude the exposition with several extensions of this theory.

II. SUB - RIEMANNIAN SETTING

Let (M, g) be a Riemannian manifold. Then an inner product g_{p} can be defined on each tangent space $T_{p}M$ at all points $p \in M$, note that this implies the existence of a smooth map $p \to g_{p}(X(p), Y(p))$ for every pair of vector fields X, Y on M. This family of continuously varying inner products leads to a Riemannian metric on M. With this metric various geometric features on M can be described, in particular distances between two points, angles between two lines, geodesics etc. can be computed using ‘g’. In many specialized applications one however restricts tangents to certain horizontal subspaces. Here one considers a smooth vector distribution say Δ and then the metric tensor ‘g’ is restricted only to Δ-horizontal subspace Δq.

Definition 2.1(Distribution) [4]: Let $H = \text{span} \{X, Y\}$ be the distribution generated by the vector fields X and Y. Since $[Y, X] = 2T \in H$ it follows that H is not involutive, we can write $L(s^{2}) = H \oplus Rt$. The distribution H will be called the horizontal distribution. Any curve on the sphere which has the velocity vector contained in the distribution H will be horizontal curve.

Such a manifold (M, Δ, g) is called a Sub-Riemannian manifold. Since the metric is restricted to the distribution Δ on M. Further the topology of a such a manifold is the one induced by the Sub-Riemannian distance given as follows.

Definition 2.2 (Sub-Riemannian Distance): Consider a Sub-Riemannian manifold (M, Δ, g) and a Lipschitzian horizontal curve $\gamma: I \subseteq R \to M$, $\gamma(t) \in \Delta_{0}(t)$ for almost all $t \in I$. The length of γ is given as $\text{length} (\gamma) = \int_{I} \sqrt{g_{\gamma(t)}(\gamma'(t))} dt$, where $g_{\gamma(t)}$ is the inner product in $\Delta_{0}(t)$. The sub-Riemannian distance between two points $p, q \in M$ is length of the shortest curve joining p to q.

$d(p, q) = \inf \{\text{length}(\gamma) : \gamma$ is horizontal curve, γ joins p to $q\}$

In this exposition, we consider some applications of such a structure so as to bring out the utility of developing sub-Riemannian geometry.

III. SUB-RIEMANNIAN PROBLEM:

Consider a drift less dynamical system on Sub-Riemannian manifold (M, Δ, g):

$\dot{q} = \sum_{i=1}^{m} U_{i}(t)f_{i}(q), (u_{1}, \ldots, u_{m}) \in \mathbb{R}^{m}$

The problem of finding horizontal curves γ from initial state q_{0} to final state q_{1} with shortest sub-Riemannian distance $d(q_{0}, q_{1})$ and tangent to a given distribution $\Delta_{q} \subset T_{q}M$ is called sub-Riemannian problem.

Example 3.1: (Sub-Riemannian Structures)
The Lie group $SH(2)$:

The group $SH(2)$ can be represented by third order matrices:

$M = \text{SH}(2) = \left(\begin{array}{cc} \cosh x & \sinh x \\ \sinh x & \cosh x \end{array} \right)$, $x, y, z \in \mathbb{R}$

The Lie group $SH(2)$ comprises three basis one-parameter subgroups given as:

$w_{1}(t) = \left(\begin{array}{ccc} \cosh t & 0 & 0 \\ \sinh t & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$, $w_{2}(t) = \left(\begin{array}{ccc} 1 & 0 & t \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$.

208 | P a g e
The Lie algebra is thus:

\[\mathfrak{L} = T_{\mathbb{R}^3} \text{sh}(2) = \text{span} \{ A_1, A_2, A_3 \}. \]

The multiplication rule for \(L \) is \([A, B] = AB - BA \).

Therefore, the Lie bracket for \(\text{sh}(2) \) is given as \([A_1, A_2] = A_3 \), \([A_1, A_3] = A_2 \) and \([A_2, A_3] = A_1 \).

Example 3.2 (Sub-Riemannian structure on \(S^3 \)): We consider the parametrization of \(S^3 \) in terms of the Euler angles, which due to spherical symmetry are more suitable than the Cartesian coordinates.

Consider \(\phi, \psi, \theta \) to be the Euler’s angles and let \(\alpha = \frac{\phi + \psi}{2}, \beta = \frac{\phi - \psi}{2} \).

The sphere \(S^3 \) can be parametrized as

\[
\begin{align*}
 x_1 &= \cos \frac{\phi + \psi}{2} \cos \frac{\phi - \psi}{2} = \cos \alpha \cos \beta \\
 x_2 &= \sin \frac{\phi + \psi}{2} \cos \frac{\phi - \psi}{2} = \sin \alpha \cos \beta \\
 y_1 &= \cos \frac{\phi + \psi}{2} \sin \frac{\phi - \psi}{2} = \sin \alpha \sin \beta \\
 y_2 &= \sin \frac{\phi + \psi}{2} \sin \frac{\phi - \psi}{2} = \cos \alpha \sin \beta
\end{align*}
\]

with \(0 \leq \theta \leq \pi, -\pi \leq \alpha \leq \pi \). In the following we shall write the restriction of the one-form to \(S^3 \) using Euler’s angles. Since 1

\[
\begin{align*}
 dx_1 &= -\sin \alpha \cos \beta \sin \theta - \frac{1}{2} \cos \cos \theta \cos \Theta \\
 dx_2 &= \cos \alpha \cos \beta \sin \theta - \frac{1}{2} \sin \cos \theta \cos \Theta \\
 dy_1 &= -\sin \alpha \sin \beta \cos \theta + \frac{1}{2} \cos \cos \theta \cos \Theta \\
 dy_2 &= \cos \alpha \sin \beta \cos \theta + \frac{1}{2} \sin \cos \theta \cos \Theta
\end{align*}
\]

we obtain,

\[
\begin{align*}
 \omega &= x_1 dy_1 - y_1 dx_1 + x_2 dy_2 - y_2 dx_2 \\
 &= \left(\cos \beta \sin \alpha \sin \theta - \sin \beta \cos \cos \theta \cos \Theta \right) d\alpha \\
 &\quad + \left(-\cos \alpha \cos \beta \sin \theta + \sin \alpha \cos \theta \cos \Theta \right) d\beta \\
 &\quad + \frac{1}{2} \left(\cos \alpha \cos \beta \cos \Theta + \cos \alpha \cos \beta \sin \theta \sin \Theta \right) d\gamma \\
 &\quad + \sin \alpha \sin \beta \cos \Theta d\theta \\
 &= \sin \beta \sin \Theta d\alpha + \cos \beta \sin \Theta d\beta + \frac{1}{2} \cos \beta d\Theta \\
 &= \frac{1}{2} \sin \beta \sin \Theta d\alpha + \frac{1}{2} \cos \beta d\beta
\end{align*}
\]

Satisfying \(Hu(z) \geq Hv(z) \) for all admissible \(v \).

The control dependent Hamiltonian that makes a presence here in the forward kinematics problem. Here we are given a configuration of the system with all possible joints and we need to arrive at the end configuration system. The configuration space \(Q \) is a Cartesian product of the spaces of individual joints of the manipulators as discussed above. Hence the forward kinematics problem is represented as \(g : Q \rightarrow SE(3) \) where \(Q \) is the total configuration space and \(SE(3) \) is the set of all rigid motions of the 3-dimensional Euclidean space. The mapping \(g \) is essentially a composition of rigid motions due to individual joints. We next consider the notion of a workspace \(W \).

\[
W = \{ g(\theta) : \theta \in \Omega \} \subseteq SE(3) .
\]

The remote sensing capabilities for an automated mission are achieved by considering this subspace of the 3-dimensional Euclidean space. In the inverse kinematic problem we are given a desired end configuration and we need to build a robotic system such that the set of all controls \(\theta \) leads to the end configuration. It is in this situation algebraic geometry is heavily used. For example in the plane a two-link manipulator has to satisfy the following equations

\[
\begin{align*}
 x &= l_1 \cos \theta_1 \cos \theta_2 + l_2 \cos(\theta_1 + \theta_2) \quad (1) \\
 y &= l_1 \sin \theta_1 \cos \theta_2 + l_2 \sin(\theta_1 + \theta_2) \quad (2)
\end{align*}
\]

By using the 2 equations one determines answer for the forward problem essentially by solving for \(\theta_1 \) and \(\theta_2 \) given \(x \) and \(y \). Thus one has a set of equations in more realistic examples and we need to determine the parameters involved.

IV. IMAGE ANALYSIS PROBLEM:

For image analysis from a neurobiological viewpoint we should be interested in measurements of images. Thus images can be parameterized by location, log-width, and orientation. While log width distinguishes various scaling of
measurements orientations distinguishes the possible rotations. Thus the space of measurements \(I = M \times U \), where \(M = \mathbb{R}^2 \times x \mathbb{S}^3 \) a four dimensional differentiable manifold. \(U \) is the set of all possible measurement results.

Fixing width one gets a standard circle principle bundle. Any curve in the measurement space must have its orientation and location tangents aligned. Thus with this constraint, we are led to a sub Riemannian structure on \(I \).

Fixing width one gets a standard circle principle bundle. Any curve in the measurement space must have its orientation and location tangents aligned. Thus with this constraint, we are led to a sub Riemannian structure on \(I \).

Let \(\Omega = dx_2 - \tan dx_1 = 0 \) \(\ldots \ldots (1) \) be the equation defining the constraint referred to as the cotangent equation in [1]. If we restrict our curves to this distribution respecting (1) then we get into the realm of sub Riemannian geometry.

The unit 3- sphere centered on the origin is the set of \(\mathbb{R}^4 \) defined by:

\[
S^3 = \{(x_1,x_2,x_3,x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1 \}
\]

It is often convenient to regard \(\mathbb{R}^4 \) as two complex dimensional space \(\mathbb{C}^2 \) or the space of quaternion \(\mathbb{H} \). The unit 3- sphere is given by:

\[
S^3 = \{(z_1,z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1 \}
\] or

\[
S^3 = \{q \in \mathbb{H} : |q|^2 = 1 \}.
\]

The latter description represents the sphere \(S^3 \) as a set of unit quaternions and it can be considered as a group \(Sp(1) \), where the group operation is just a multiplication of quaternions. The group \(Sp(1) \) is a 3– dimensional Lie group , isomorphic to \(SU(2) \) by the isomorphism \(\mathbb{C}^2 \cong \mathbb{R}^4 \). The unitary group \(SU(2) \) is the group of matrices:

\[
\begin{pmatrix}
\frac{z_1}{\overline{z}_2} & \frac{\overline{z}_1}{z_2} \\
\frac{\overline{z}_2}{z_1} & \frac{z_2}{\overline{z}_1}
\end{pmatrix}
\], \(z_1, z_2 \in \mathbb{C} \),

\[
|z_1|^2 + |z_2|^2 = 1
\]

Where the group law is given by the multiplication of matrices. Let us identify \(\mathbb{R}^3 \) with pure imaginary quaternions. The conjugation \(q_2 \bar{h} \) of a pure imaginary quaternions \(h \) by a unit \(q \) defines rotation in \(\mathbb{R}^3 \), and since \(|q_2 \bar{h}| = |h| \), the map \(h \mapsto q_2 \bar{h} \) defines a two–to–one homomorphism \(Sp(1) \mapsto SO(3) \). The Hopf map \(\pi : S^3 \mapsto S^2 \) can be defined by:

\[
S^3 \ni q \mapsto \pi(q) = \frac{q}{|q|} \in S^2.
\]

The Hopf map defines a principle circle bundle also known as principal bundle. Topologically \(S^3 \) is a compact, simply connected, 3- dimensional manifold without boundary.

V. CONCLUSIONS

In this exposition we have considered simple mechanical systems where the goal is to optimize the energy functionals in such a way that the system satisfies the constraints of the possible dynamics. There several examples of physical dynamical systems like to bicycle dynamics problem with oval wheels where the description of controllability is quite subtle. Here one can view the problem in terms of kinematic controllability. One can extend the study for a class of local kinematic controllability problems and develop conditions on the vectorfields so as to achieve the desired optimization.

REFERENCES

[4] Ovidiu Calin, Der-Chen Chang and Irina Markina, Sub-Riemannian geometry on the Sphere \(S^3 \).