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Abstract—This study deals with the Tiagba lagoon bay 

eutrophication modeling by using Artificial Neural Networks 

(ANN), principally by using Multilayer Back-propagation based 

on Levenberg-Marquardt algorithm. 10 or 11 inputs variables, 

temperature (T), pH, dissolved oxygen (DO), NH4
+, NO3

-and

PO4
3-, monthly precipitation (MP), monthly debit of river

Bandama (DBan), suspended matters (SM), transparence 

(Trans), date of sampling (DS) were used respectively for static 

and dynamic modeling, while one output variable (chlorophyll a) 

was considered for the both case. For optimization of the ANN, it 

was shown that the architecture 10-11-1 was the most suitable for 

the static modeling of chlorophyll a while the 11-11-1 

architecture was the best for dynamic modeling. The validation 

of these models was performed by analyzing the residues. It was 

found that theses residues were well distributed between 0.3 and 

0.4% and followed a normal law according the Henry 

representation in the both case. So the models obtained were 

suitable for the prediction of the chlorophyll a an evolution in 

relation of the above variables. 

Key words— pollution, eutrophication modeling, MLP- BP, 

L-M algorithm, Tiagba’s lagoon bay, Côte d’Ivoire. 

I. INTRODUCTION 

Eutrophication is one of common major problems of water 

bodies. This phenomenon is due to the high presences of 

nitrogen and phosphorus [1-15]. Nitrogen and phosphorus are 

both its limiting factors [16-22], whereas phosphorus is only 

mastery factor [16]. Eutrophication causes the destruction of 

ecosystem (loss of biodiversity of waters bodies, health risks 

for man and animals, hindrance of the anthropogenic activities, 

etc.). In order to gauge how to best prevent eutrophication from 

occurring, modeling seems to be one of the suitable ways. 

However, linear models are less suitable than the nonlinear 

models in eutrophication prediction because of the complex 

physical, chemical and biological process involved [23-29]. 

Among the nonlinear models, Artificial Neuron Network 

(ANN) are becoming more and more common to be used in 

development of prediction models for complex systems as the 

theory behind them develops and the processing power of 

computers increase. There is a lot of ANN. MultiLayer 

Perceptron based on Back Propagation algorithm (MLP-BP) is 

one of them. Efficacy of this model in eutrophication 

prediction and in the description of hydrological phenomenon 

is well-known. 

The great major of Ivoirian water bodies are affected by 

eutrophication phenomenon. That’s the case of Tiagba’s 

lagoon bay. Known for its traditional houses built on the stilts, 

Tiagba is one of the tourist attractions of Côte d’Ivoire. 

Therefore, it plays an important role in the socio-economic 

development of this country. Its lagoon-bay presents a bad state 

today [33]. So, it’s important to take decisions for its 

rehabilitation and its protection. In this context, this study 

concerning eutrophication prediction by MLP-BP based on 

Levenberg-Marquardt (L-M) algorithm in this bay was led. The 

static and dynamic studies were considered in this case. 

II. GENERALITIES ON MLP-BP BASED ON L-M ALGORITHM

A. MLP-BP 

In its standard conception, MLP has one input layer, at least 

one hidden layer and one output layer. However, theoretical 

works have shown that a single hidden layer is sufficient for an 

ANN to approximate and any complex nonlinear function [34-

35]. That justifies it currently use with one hidden layer 
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(Fig.1). Each neuron of one layer is connected with the neurons 

of other layers. There isn’t connection between neurons of 

same layer. A weight is affected at each connection. There isn’t 

defined function on neurons of input layer. On the hidden 

neurons, sigmoid function (1) is used as active function 

whereas on output neurons it’s used simple linear function (2) 

as active function. The network isn’t back-active and it’s 

synchronic. 

At each hidden neuron j, the inputs pass through a weighted 

sum to obtain an output layer vector yi as: 

Where xi is the input, wij are the weights associated with 

each input/node connection, and bj is the bias associated with 

node j. This sum is used in nonlinear activation function as: 

Where ys is the output of hidden layer, wj are the weights 

associated with each input/node connection between the hidden 

neurons and output neurons, and bs is the bias associated with 

node s. So, the output of the hidden layer, ys, acts as the final 

output of the network. 

Traditional MLP uses Back-Propagation (BP) algorithm 

with gradient descent technique such as algorithm learning. It’s 

a supervised algorithm. It consists to send back errors 

committed by one neuron at his nodes and the neurons which 

are linked. In the same time, errors are corrected following 

their importance. The weights which contribute to have the 

important errors are more modified than those committing the 

minimal errors. However, this algorithm gives the direction 

where to go to find the minimum but don’t give the step. In BP 

algorithm with gradient descent technique, the step is fixed and 

in adaptation variable it can take any values at the different 

iterations. To favour a best learning of MLP-RP, many 

algorithms, coming from statistical theory, are associated at BP 

algorithm with gradient descent technique. Among them 

there’s Levenberg-Marquardt algorithm (L-M algorithm) [36-

37]. 

Fig.1. MLP with one hidden layer 

B. L-M algorithm 

While the BP algorithm with gradient descent technique is 

a steepest descent algorithm, the L-M algorithm is an 

approximation to Newton-Gauss method. If a function V(x) is 

to be minimized with respect to the parameter vector x, then 

Newton’s method would be: 

Where is Hessian matrix and is the gradient. If V(x) reads: 

Then it can be shown that 

Where is Jacobian matrix and 

For the Gauss-Newton method it’s assumed that S and 

equation (5) becomes: 
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The Levenberg-Marquardt modification to Gauss-Newton 

method is: 

The parameter µ is multiplied by some factor (β) whenever 

a step would result in an increased. When a step reduces, µ is 

divided by β. When the scalar µ is very large the L-M 

algorithm approximates the steepest descent method. However, 

when µ is small, it’s same as Gauss-Newton method. Since 

minimum, the goal is to shift toward the Gauss-Newton 

method as quickly as possible. The value of µ decreased after 

each step unless the change in error is positive; i.e. the error 

increases. For the neural network-mapping problem, the terms 

in the Jacobian matrix can be computed by a simple 

modification to BP algorithm [30; 38]. 

III. MATERIALS AND METHODS

A. Localisation and morphologic characteristics of Tiagba’s 

lagoon-bay 

Known for its traditional houses built on stilts, Tiagba is 

Lake Village. It’s one of tourist attraction of Côte d’Ivoire. Its 

lagoon bay is located in the far-west of Ebrié system (4°40’ 

and 4°45’ longitude west and 5°20’ latitude north). It’s large 

(11.5 Km
2
), shallow lagoon (2.9 m about), with water volume 

estimated at 3.35 104 m
3
. Its catchment basin is about 135 

Km
2
. This bay communicates with waters of the principal 

branch of Ebrié system’s by the pass of “eaux libres du chenal 

central” and with the Cosrou’s lagoon-bay by the pass of 

“Cosrou”. Tiagba’s lagoon bay is far from Vridi channel (80 

Km), single entrance of sea-water in the system Ebrié. So, it 

undergoes little sea influence. The tides are very low with 

currents rarely exceeding 0.1 to 0.2 m.s
-1

 [39]. So its renewal 

rate is linked to rainfall (meteorite runoff and fluvial 

contribution). On that coastline of Côte d’Ivoire, the climate is 

characterized by a long and short rainy-season (respectively in 

May-July and October), and a long and short dry season 

(respectively in December-April and August). The direct 

contributions of meteorite runoff waters are important in rainy-

seasons. Water stream contributions essentially provide on the 

one hand from the river Bandama, characterized by an annual 

flood (from September to October) and pours into Grand-

Lahou’s lagoon (a tiny part reaches Tiagba’s lagoon-bay 

through the channel of Assagny), and on the other hand from 

the river Ira, located in the coastline area and characterized by 

annual floods (the first and most important in June and the 

second in October). It pours in the Cosrou’s lagoon bay 

through which, it reaches the Tiagba’s lagoon-bay during the 

annual floods. Tiagba’s lagoon bay is bad renewal. That’s due 

to the small area of the coastline of the river Ira and low 

contribution in water of the river Bandama. The anthropogenic 

activities of its coastlines are dominated by agriculture. This 

bay receives domestic and agricultural wastes because of the 

sanitation lack systems on the drainage basin. Yao et al. [33] 

have shown that this system was a hypereutrophic lagoon. 

B. Using of MLP-BP based on L-M algorithm in this study 

1) Inputs and output variables

Concerning the prediction of the static evolution of 

chlorophyll a, 10 physicochemical parameters, important in the 

spatiotemporal evolution of the phytoplankton in this lagoon-

bay (Temperature (T), pH (pH), Dissolved oxygen (DO), bio-

carbonates (NH4
+
, NO3

-
 and PO4

3-
), monthly precipitations

(MP), monthly debit of the river Bandama (DBan) and shown 

his high presence in water bodies (suspended matters (SM), 

transparence (Trans)), was used as input variables. At these 

parameters, the Date of Sampling (DS) was added as input 

variable in the case of the prediction of the dynamic evolution 

of chlorophyll a in this bay. Chlorophyll a (Chl a) is constituted 

the only output variable in both cases. 

2) Training and test processes

In this study, the development of MLP-BP based on L-M 

algorithm was performed by using the module TOOLBOX of 

MATLAB R 2008 software. Weights were initialized and were 

assigned randomly based on an input random number. As 

training progress, weights were modified to minimize the error 

in the output. The network architecture was optimized by the 

variation of the hidden neurons number to 1 at 15 using simple 

trial-and-error method. 1500 simulations were performed for 

each hidden neuron number and the best result was recorded. 

All throughout these simulations, the adaptive learning rates 

were used to speed up training. The learning rate was started at 

0.2 and finally reducing to 0.01 whereas the momentum was 

fixed at 0.5.  

Data used in this study were collected monthly during 

two years (August 2007-July 2009). Data set for prediction of 

the static evolution of chlorophyll a, composed of 4488 

records, was coded between range [0; 22], while the one for 

prediction of the dynamic evolution of chlorophyll a composed 

of 5148 records was coded between range [0; 23]. Each of 

these sets was divided in two subsets. The first subset 

contained 75% of the records was used as a training set and the 

second contained 25% of the records as test set. 

3) Validation of the optimal model

The choice of the optimal model was made based on the 

values of the training coefficient of determination (R
2
tr), the 

test coefficient of determination (R
2
te) and the mean squad 

error (MSE) during training process. The optimal model is the 

one that presents simultaneously high values of R
2
tr and R

2
te. 

In addition, it is possible that both models have similar 

performance in terms of coefficient of determination. In this 

case, the best performing model is one that has the lowest value 

of MSE. A model can be validated when its R
2
te is superior to 

0.5 [40-41] and all the values of MSE obtained during test 

process, are weak and perfectibility disturbed following the 

normal law according to Henry’s representation [42-43]. 
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IV. RESULTS

A. Spatial variation of the input data 

The basic statistical parameters, i.e. minimum (Min), 

median, maximum (Max), mean, standard deviation (SD), and 

relative standard deviation (RSD) of the variables 

(Temperature (T), pH, dissolved oxygen (DO), NH4
+
, NO3

-
and

PO4
3-

, monthly precipitation (MP), monthly debit of river

Bandama (DBan), suspended matters (SM), transparence 

(Trans)) used in this study were presented in Table 1. PO4
3-

,

DBan, SM, MP, NH4
+
, NO3

-
 showed large spatial variations

with RSD superior to 60%. 

Table.1. Statistics of the variables studied (SD means 

standard deviation; RSD means Relative Square Deviation) 

B. ANN architecture optimization 

The determination of the most powerful architecture based 

on mean square error (MSE), coefficient of determination (R
2
tr 

and R
2
te) is a key step. Table 2 illustrates the performance 

studies for various topologies. The best compromise (that gave 

a low value of MSE, a high value of R
2
tr and R

2
te) was 

obtained respectively with the 10 – 11 – 1 and 11 – 11 – 1 

structure ANN model. The network topology for these two 

models is shown in Fig.2 and Fig.3 respectively. 

Table.2.Variation of R
2
tr, R

2
te and MSE as a function 

of hidden neurons number 

Fig. 2. Architectural network of the static model 10-11-1 

Fig. 3. Architectural network of model 11-11-1 

C. Models validation 

The static and dynamic model obtained respectively from 

architecture 10-11-1 and 11-11-1 were diagnosed using error 

analysis and normal unit of Residual plot (Henry’s 

representation) depicted respectively in fig. 4 and 5. The 

scattered error plot showed that errors were uniformly and 

randomly distributed around the mean value (0) in the range of 

- 0.397 to 0.323 % for static model (Fig. 4A) and -0,384 to 

0.278 for dynamic model (Fig. 4B). Moreover, while 

considering Fig.5A and 5B, the MSE were perfectively 

disturbed following a normal law with determination 

coefficient equal to 0,962. Consequently, the models obtained 

from the two architectures were suitable to be used for 

Chlorophyll a prevision and eutrophication monitoring. 
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Fig. 4. Scatter error plot between observed and 

calculated outputs. 
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Fig.5. Normal unit plot of residual 

V. DISCUSSIONS 

More closely looking at Fig.4 and 5, the MLP-BP based on 

L-M. Algorithm reproduce the observation well. So, the ability 

of this ANN model for eutrophication prediction is confirmed 

again in this work. Indeed, the model 10-11-1 traduces 

physically 80% (R
2
tr = 0.647)

1/2
 of the static evolution of 

chlorophyll a due to the variations of 10 inputs variables and 

predicts formally this evolution at 79% (R
2
te = 0.626)

1/2
 on the 

study period. Concerning the dynamic evolution of chlorophyll 

a, the model 11-11-1 express physically at 83.66% (R
2
tr = 

0.698)
1/2

 the dynamic evolution of chlorophyll a due to the 

variations of 11 variables and predicts formally this evolution 

at 81.24% (R
2
te = 0.664)

1/2
 in the same period. The model 

obtained in the case of the dynamic study seems to be more 

suitable than the static one.  

In addition the very weak relative error between observed 

and calculated outputs (Fig.4) is due for the best chosen of the 

factors (variables) affected the chlorophyll a evolution in this 

lagoon bay during the study period and by taken much care 

during training and validation process. In effect, a number of 

researchers have noted that their ANN models have failed to 

capture values which lie outside range of values contained in 

the ANN calibration data [44]. 

Finally, it’s important to retain that study confirms ANN 

abilities to predict any complexes phenomenon such as 

eutrophication; as shown by many studies [30; 45-53]. 

VI. CONCLUSION

In this study, the ability of the ANN model to predict 

eutrophication in the lagoon bay of Tiagba in Côte d’Ivoire was 

investigated and justified. As for the ANN performance, the 

topology with 10 inputs and 11 hidden nodes gave the best 

performance in the case of the prediction of the static evolution 
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of chlorophyll a while the topology with 11 inputs and 11 

hidden nodes is the best for the prediction of the dynamic 

evolution of chlorophyll a. These models established give a 

good approach of the spatiotemporal variation of chlorophyll a 

in this lagoon bay and can be used for the eutrophication 

monitoring in the perspective of its rehabilitation and 

protection 
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