MAXIMAL AND MINIMAL IDEALS IN TRANSFORMATION SEMIGROUPS WITH INVARIANT SETS

Attapol Praleah, Jintana Sanwong
Mathematics Department
Faculty of Science, Chiang Mai University
Chiang Mai, Thailand
attapol_praleah@outlook.com

Abstract

Let X be a set and $T(X)$ denote the semigroup (under composition) of transformations from X into itself. For a fixed nonempty subset Y of X, let $S(X, Y)=\{\alpha \in T(X): Y \alpha \subseteq Y\}$. Then $S(X, Y)$ is a semigroup of total transformations of X which leave a subset Y of X invariant. In this paper, existence and uniqueness of maximal and minimal ideals of $S(X, Y)$ are proved. Moreover, we present a maximal congruence on $S(X, Y)$ when X is a finite set.

Keywords-maximal ideals, minimal ideals, transformation semigroups with invariant sets.

I. Introduction

Let X be a set and $\varnothing \neq Y \subseteq X$. The semigroup we consider is $S(X, Y)$ consists of all mappings in $T(X)$ which leave $Y \subseteq X$ invariant. K. D. Magill [5] introduced and studied the semigroup $S(X, Y)$ in 1996. In fact, if $Y=X, \quad$ then $S(X, Y)=T(X)$. So we may regard $S(X, Y)$ as a generalization of $T(X)$. In 2005, S. Nenthein, P. Youngkhong, and Y. Kemprasit [7] showed that $S(X, Y)$ is a regular semigroup if and only if $X=Y$ or Y contains exactly one element, and $\operatorname{Reg} S(X, Y)=\{\alpha \in S(X, Y): X \alpha \cap Y=Y \alpha\}$ is the set of all regular elements of $S(X, Y)$. Moreover, they counted the numbers of regular elements in $S(X, Y)$ for a finite set X. The numbers were given in terms of the cardinalities of X and Y. Later in 2013, W. Choomanee, P. Honyam and J. Sanwong [1] studied left regular, right regular and intraregular elements of $S(X, Y)$ and consider the relationships between these elements. Moreover, they counted the number of left regular elements of $S(X, Y)$ when X is a finite set.

As far back in 1952, Malcev [6] determined ideals of $T(X)$. In 2011 P. Honyam and J. Sanwong [4] characterized when $S(X, Y)$ is isomorphic to $T(Z)$ for some set Z and prove that every semigroup A can be embedded in $S\left(A^{1}, A\right)$. Then they described Green's relations and ideals on $S(X, Y)$ and applied these results to obtain its group H - classes and ideals.

In this paper, we determine maximal and minimal ideals of $S(X, Y)$. We also present a maximal congruence on $S(X, Y)$ when X is a finite set.

II. PRELIMINARIES AND NOTATIONS

In this section, we list some known results, definitions and notations that will be used throughout this paper.

Let X be a set and Y a nonempty subset of X. Then $S(X, Y)$ is a semigroup with identity 1_{X}, the identity map on X. Green's relation on $S(X, Y)$ are given by P. Honyam and J. Sanwong [4], which are needed in characterizing ideals on $S(X, Y)$.
Lemma 2.1. [4] Let $\alpha, \beta \in S(X, Y)$. Then
(1) $\alpha \mathrm{L} \beta$ if and only if $X \alpha=X \beta$ and $Y \alpha=Y \beta$;
(2) $\alpha \mathrm{R} \beta$ if and only if $\pi_{\alpha}=\pi_{\beta}$ and $\pi_{\alpha}(Y)=\pi_{\beta}(Y)$
(3) $\alpha \mathrm{J} \beta$ if and only if $|X \alpha|=|X \beta|,|Y \alpha|=|Y \beta|$ and
$|X \alpha \backslash Y|=|X \beta \backslash Y|$
Let p be any cardinal number such that

$$
p^{\prime}=\min \{q: q>p\} .
$$

Note that p^{\prime} always exists since the cardinals are wellordered and when p is finite we have $p^{\prime}=p+1=$ the successor of p.

To describe ideals of $S(X, Y)$, we let $|X|=a,|Y|=b$ and $|X \backslash Y|=c$. For each cardinals r, s, t such that $2 \leq r \leq a^{\prime}, 2 \leq a \leq b^{\prime}$ and $1 \leq t \leq c^{\prime}$, we define

$$
\begin{aligned}
S(r, s, t)= & \{\alpha \in S(X, Y):|X \alpha|<r,|Y \alpha|< \\
& s \text { and }|X \alpha \backslash Y<t|\} .
\end{aligned}
$$

Theorem 2.2. [4] The set $S(r, s, t)$ is an ideal of $S(X, Y)$.
To obtain ideals of $S(X, Y)$, we need the following notation. Let Z be a nonempty subset of $S(X, Y)$, and let

$$
\begin{aligned}
& K(Z)=\{\alpha \in S(X, Y):|X \alpha| \leq|X \beta|,|Y \alpha| \leq|Y \beta| \text { and } \\
& \qquad|X \alpha| \backslash Y \leq|X \alpha \backslash Y| \text { for some } \beta \in Z\} .
\end{aligned}
$$

Then we see that $Z \subseteq K(Z)$ and $Z_{1} \subseteq Z_{2}$ implies that $K\left(Z_{1}\right) \subseteq K\left(Z_{2}\right)$.
Theorem 2.3. [4] The ideals of $S(X, Y)$ are precisely the set $K(Z)$ for some nonempty subset Z of $S(X, Y)$.

Let $G(A)$ be the group of permutation on the set A. Define
$\boldsymbol{G}(X, Y)=\left\{\alpha \in G(X):\left.\alpha\right|_{Y} \in G(Y)\right\}$,
Where $Y \subseteq X$ and $\left.\alpha\right|_{Y}$ is the restriction of α on the set Y. Then $G(X, Y)$ is a subgroup of the permutation group $G(A)$.

If X is a finite set with n elements and Y a nonempty subset of X with m elements, then we define
$J_{r, s, t}=\{\alpha \in S(X, Y):|X \alpha|=r,|Y \alpha|=s$ and $|X \alpha \backslash Y|=t\}$
and
$J_{k}=\{\alpha \in S(X, Y):|X \alpha|=k\}$
where $1 \leq r \leq n, 1 \leq s \leq m, 0 \leq t \leq n-m$ and $1 \leq k \leq n$. Thus $J_{r, s, t}$ is a J - class of $S(X, Y), J_{1}$ is the set of all constant maps with image in Y and $J_{n}=G(X, Y)$.

The following convenient notation will be used in this paper: given $\alpha \in S(X, Y)$ we write
$\alpha=\binom{X_{i}}{a_{i}}$,
and take as understood that the subscript i belongs to some (unmentioned) index set I, the abbreviation $\left\{a_{i}\right\}$ denote $\left\{a_{i}: i \in I\right\}$, and that $X \alpha=\left\{a_{i}\right\}$ and $a_{i} \alpha^{-1}=X_{i}$.

With the above notation, for any $\alpha \in S(X, Y)$ we can write
$\alpha=\left(\begin{array}{ccc}A_{i} & B_{j} & C_{k} \\ a_{i} & b_{j} & c_{k}\end{array}\right)$,
where $A_{i} \cap Y \neq \varnothing ; B_{j}, C_{k} \subseteq X \backslash Y ;\left\{a_{i}\right\} \subseteq Y ;\left\{b_{j}\right\} \subseteq Y \backslash\left\{a_{i}\right\}$ and $\left\{c_{k}\right\} \subseteq X \backslash Y$. Here, I is a nonempty set, but J or K can be empty.

III. Results

From now on, we let X be a finite set with n elements and Y a nonempty subset of X with m elements. Let \mathscr{J} be the set of all ideals of $S(X, Y)$. Then (\mathscr{J}, \subseteq) is a partially ordered set with the following property.
Theorem 3.1. J_{1} is a minimum ideal of $S(X, Y)$.
Proof: We prove that $J_{1}=S(2,2,1)$. It is clear that $J_{1} \subseteq S(2,2,1)$. Let $\alpha \in S(2,2,1)$. Then $|X \alpha|<2,|Y \alpha|<2,|X \alpha \backslash Y|<1$ an d thus $|X \alpha|=1=|Y \alpha|$. So α is a constant map and $\alpha \in J_{1}$. Therefore, J_{1} is an ideal of $S(X, Y)$. To show that J_{1} is a minimum ideal, let I be an ideal of $S(X, Y)$ and $\beta \in J_{1}$. Then there exists $\varnothing \neq Z \subseteq S(X, Y)$ such that $I=K(Z)$. Let $\gamma \in Z$. Then $|X \gamma|,|Y \gamma| \geq 1$, so $|X \beta|=1 \leq|X \gamma|,|Y \beta|=1 \leq|Y \gamma|$ and $|X \beta \backslash Y|=0 \leq|X \gamma \backslash Y|$.Thus $\beta \in I$, i.e., $J_{1} \subseteq I$ as required. +
Lemma 3.2. If $|Y|=1$ and $J_{2, s, t} \neq \varnothing$, then $J_{1} \cup J_{2, s, t}$ is an ideal of $S(X, Y)$ if and only if $s=1=t$.

Proof: Assume that $|Y|=1$ and $J_{2, s, t} \neq \varnothing$. Suppose that $J_{1} \cup J_{2, s, t}$ is an ideal of $S(X, Y)$. Let $\alpha \in J_{2, s, t}$. Since $Y \alpha \subseteq Y$, we have $1 \leq|Y \alpha| \leq|Y|=1$, so $|Y \alpha|=1$ which implies that $s=|Y \alpha|=1$. Since $|X \alpha|=2$ and $Y=Y \alpha$, we have $|X \alpha \backslash Y|=|X \alpha \backslash Y \alpha|=2-1=1$, that is $t=1$.

Conversely, assume that $s=1=t$. First we show that $J_{1} \cup J_{2,1,1}=S(3,2,2)$. Let $\alpha \in J_{1} \cup J_{2,1,1}$. Then $\alpha \in J_{1}$ or $\alpha \in J_{2,1,1}$. If $\quad \alpha \in J_{1}$, then $\quad|X \alpha|=1<3,|Y \alpha| \leq|X \alpha|=1<2$ and $|X \alpha \backslash Y|=1-1=0<2$. thus $\alpha \in S(3,2,2)$. If $\alpha \in J_{2,1,1}$,
www.ijtra.com Special Issue 11 (Nov-Dec 2014), PP. 32-35 then $\quad|X \alpha|=2<3,|Y \alpha|=1<2 \quad$ and $\quad|X \alpha \backslash Y|=1<2$. Thus $\alpha \in S(3,2,2)$. For the other containment, let $\alpha \in S(3,2,2)$. Then $|X \alpha| \leq 2,|Y \alpha| \leq 1 \quad$ and $\quad|X \alpha \backslash Y| \leq 1$. If $|X \alpha|=1$, then $\alpha \in J_{1} . \quad$ if $\quad|X \alpha|=2$, then $\quad|X \alpha \backslash Y|=|X \alpha \backslash Y \alpha|=2-1=1$. Then $\alpha \in J_{2,1,1}$. Hence $J_{1} \cup J_{2,1,1}=S(3,2,2)$ is an ideal. +

Since J_{1} is the minimum ideal of $S(X, Y)$, we define a minimum ideal in $S(X, Y)$ as follows. An ideal $J_{1} \emptyset I$ of $S(X, Y)$ is a minimal ideal if J is an ideal such that $J_{1} Ø j \subseteq I$, then $J=I$.

Theorem 3.3. If $|Y|=1$, then $J_{1} \cup J_{2,1,1}$ is the unique minimal ideal of $S(X, Y)$.

Proof: Suppose that $Y=\{a\}$. By Lemma 3.2, we have $J_{1} \cup J_{2,1,1}$ is an ideal of $S(X, Y)$. Next, we show that $J_{1} \cup J_{2,1,1}$ is a minimal ideal of $S(X, Y)$. Let J be an ideal of $\quad S(X, Y) \quad$ such \quad that $J_{1} \subseteq j \subseteq J_{1} \cup J_{2,1,1}$. Suppose that $J \emptyset J_{1} \cup J_{2,1,1}$. It is clear that $J_{1} \subseteq J$. By assumption, we have exists $\alpha \in J_{2,1,1}$ but $\alpha \notin J$. We show that $J \subseteq J_{1}$ by supposing this is false, so $J \not \subset J_{1}$. Then there exists $\beta \in J$, but $\beta \notin J_{1}$. Since $\alpha, \beta \in J_{2,1,1}$, we can write
$\alpha=\left(\begin{array}{cc}A & X \backslash A \\ a & b\end{array}\right)$
Where $Y \subseteq A, a \in Y, b \in X \backslash Y$ and
$\beta=\left(\begin{array}{cc}B & X \backslash B \\ a & c\end{array}\right)$
Where $Y \subseteq B, c \in X \backslash Y$. Let $\gamma, \theta \in S(X, Y)$ be defined by
$\gamma=\left(\begin{array}{cc}A & X \backslash A \\ u & v\end{array}\right), \quad \theta=\left(\begin{array}{cc}Y & X \backslash Y \\ a & b\end{array}\right)$,
W here $u \in B \cap Y, v \in X \backslash B$. Consider

$$
\begin{aligned}
\gamma \beta \theta & =\left(\begin{array}{cc}
A & X \backslash A \\
u & v
\end{array}\right)\left(\begin{array}{cc}
B & X \backslash B \\
a & c
\end{array}\right)\left(\begin{array}{cc}
Y & X \backslash Y \\
a & b
\end{array}\right) \\
& =\left(\begin{array}{cc}
A & X \backslash A \\
a & b
\end{array}\right)=\alpha .
\end{aligned}
$$

Then $\alpha=\gamma \beta \theta \in J$, which is a contradiction. So $J=J_{1}$.
Hence, $J_{1} \cup J_{2,1,1}$ is a minimal ideal of $S(X, Y)$. Finally, we show that $J_{1} \cup J_{2,1,1}$ is a unique minimal ideal of $S(X, Y)$. We show that $\quad M=N$. Since N is an ideal of $S(X, Y)$, we get that $N=K(Z)$ for some $\varnothing \neq Z \subseteq S(X, Y)$. Since $J_{1} \varnothing N$, there exists $\alpha \in N$ with $|X \alpha| \geq 2$. Since $\alpha \in N=K(Z)$, we obtain that $|X \alpha| \leq|X \beta|,|Y \alpha| \leq|Y \beta|$ and $|X \alpha \backslash Y| \leq|X \beta \backslash Y|$ for some $\beta \in Z$. |Let $\gamma \in J_{2,1,1}$. Then $|X \gamma|=2$ and so $|X \gamma| \leq|X \alpha| \leq|X \beta|$. Since $\quad|Y|=1$, we have $\quad|Y \gamma|=1=|Y \alpha| \leq|Y \beta| \quad$ and $|X \gamma \backslash Y|=1 \leq|X \alpha \backslash Y| \leq|X \beta \backslash Y|$. Then $\gamma \in K(Z)=N$. Thus $J_{2,1,1} \subseteq N \quad$ and so $J_{1} \cup J_{2,1,1} \subseteq N$ which implies that $M=N$.
Lemma 3.4. If $|Y|>1$ and $J_{2, s, t} \neq \varnothing$, then $J_{1} \cup J_{2, s, t}$ is an ideal of $S(X, Y)$ if and only if $s=1, t=0$.

Proof: Assume that $|Y|>1$ and $J_{2, s, t} \neq \varnothing$
Suppose that $J_{1} \cup J_{2, s, t}$ is an ideal. Let $\alpha \in J_{2, s, t}$. Then $|X \alpha|=2,|Y \alpha|=s$ and $|X \alpha \backslash Y|=t$. Since $|X \alpha|=2$ and $1 \leq|Y \alpha| \leq|X \alpha|=2, \quad$ we \quad have $\quad 1 \leq s \leq 2, \quad$ so $0 \leq|X \alpha \backslash Y| \leq 1$. Thus $0 \leq t \leq 1$. So there are four possible cases: $s=2$ and $t=0 ; s=2$ and $t=1 ; s=1=t$; or $s=1$ and $t=0$.

If $s=2$ and $t=1$, then $|X \alpha|=2=|Y \alpha|$. Since $Y \alpha \subseteq X \alpha, \quad$ we obtain that $X \alpha=Y \alpha$ and thus $t=|X \alpha \backslash Y|=|Y \alpha \backslash Y|=0$ which is a contradiction.

If $s=2$ and $t=0$, then $J_{1} \cup J_{2, s, t}=J_{1} \cup J_{2,2,0}$. Let $\beta \in J_{2,2,0}$. So $|X \alpha|=2=|Y \beta|$ and $Y \beta \subseteq Y$, thus we can write
$\beta=\left(\begin{array}{ll}A & B \\ a & b\end{array}\right)$
where $\quad A \cap Y \neq \varnothing \neq B \cap Y ; \quad a, b \in Y$. Since $\varnothing \neq Y \varnothing X$, there exists $c \in B$ and define $\gamma \in S(X, Y)$ by
$\gamma=\left(\begin{array}{cc}C & X \backslash C \\ a & c\end{array}\right)$
where $Y \subseteq C$. So
$\gamma \beta=\left(\begin{array}{cc}C & X \backslash C \\ a & b\end{array}\right) \notin J_{1} \cup J_{2,2,0}$.
Then $J_{1} \cup J_{2,2,0}$ is not an ideal is a contradiction.
If $\quad s=1=t, \quad$ then $\quad J_{1} \cup J_{2, \mathrm{~s}, \mathrm{t}}=J_{1} \cup J_{2,1,1} . \quad$ Let $\lambda \in J_{2,1,1}$. So $|X \lambda|=2$ and $Y \lambda \subseteq Y$, thus we can write $\lambda=\left(\begin{array}{cc}A & X \backslash \mathrm{~A} \\ u & v\end{array}\right)$
where $Y \subseteq A ; u \in Y, v \in X \backslash Y$. Since $|Y|>1$, there exists $u \neq w \in Y$ and define $\mu \in S(X, Y)$ by
$\mu=\left(\begin{array}{cc}Y & X \backslash Y \\ u & w\end{array}\right)$
So
$\lambda \mu=\left(\begin{array}{cc}A & X \backslash A \\ u & w\end{array}\right) \notin J_{1} \cup J_{2,1,1}$.
Thus $J_{1} \cup J_{2,1,1}$ is not an ideal which is a contradiction. Therefore, $s=1$ and $t=0$.

Conversely, assume that $s=1$ and $t=0$. We show that $J_{1} \cup J_{2,1,0}=S(3,2,1)$.

Let $\alpha \in J_{1} \cup J_{2,1,0}$. Then $\alpha \in J_{1}$ or $\alpha \in J_{2,1,0}$. If $\alpha \in J_{1}$, then $\quad|X \alpha|=1<3,|Y \alpha| \leq|X \alpha|=1<2 \quad$ and $|X \alpha \backslash Y|=1-1=0<1$. Thus $\alpha \in S(3,2,1)$. For the other containment, let $\alpha \in S(3,2,1)$. Then $|X \alpha| \leq 2,|Y \alpha|=1$ and $|X \alpha \backslash Y|=0$. If $|X \alpha|=1$, then $\alpha \in J_{1}$. If $|X \alpha|=2,|Y \alpha|=1$ and $|X \alpha \backslash Y|=0$, then $\alpha \in J_{2,1,0}+$
Theorem 3.5. If $|Y|>1$, then $J_{1} \cup J_{2,1,0}$ is the unique minimal ideal of $S(X, Y)$.

Proof: Suppose that $|Y|>1$. By Lemma 3.4, we have $J_{1} \cup J_{2,1,0}$ is an ideal of $S(X, Y)$. To show that $J_{1} \cup J_{2,1,0}$ is a minimal ideal of $S(X, Y)$, let J be an ideal of $S(X, Y)$ such that $J_{1} \subseteq J Ø J_{1} \cup J_{2,1,0}$. It is clear that $J_{1} \cup J$. By assumption we have there exists $\alpha \in J_{2,1,0}$ but $\alpha \in J$. We prove that $J \subseteq J_{1}$ by supposing this false. Then there exists $\beta \in J$, but $\beta \in J_{1}$. Since $\alpha, \beta \in J_{2,1,0}$, we can write
$\alpha=\left(\begin{array}{cc}A & X \backslash A \\ a & b\end{array}\right)$
where $Y \subseteq A ; a, b \in Y$ and
$\beta=\left(\begin{array}{cc}B & X \backslash B \\ a^{\prime} & c\end{array}\right)$
where $Y \subseteq B ; a^{\prime}, c \in Y$. Let $\gamma, \theta \in S(X, Y)$ be defined by

$$
\gamma=\left(\begin{array}{cc}
A & X \backslash A \\
u & v
\end{array}\right), \quad \theta=\left(\begin{array}{cc}
a & X \backslash\{a\} \\
a & b
\end{array}\right)
$$

where $u \in B \cap Y, v \in X \backslash B$. so

$$
\begin{aligned}
\gamma \beta \theta & =\left(\begin{array}{cc}
A & X \backslash A \\
u & v
\end{array}\right)\left(\begin{array}{cc}
B & X \backslash B \\
a^{\prime} & c
\end{array}\right)\left(\begin{array}{cc}
a & X \backslash\{a\} \\
a & b
\end{array}\right) \\
& =\left(\begin{array}{cc}
A & X \backslash A \\
a & b
\end{array}\right)=\alpha .
\end{aligned}
$$

Then $\alpha=\gamma \beta \theta \in J$, which is a contradiction. Hence, $J_{1} \cup J_{2,1,0}$ is a minimal ideal of $S(X, Y)$. Now, we show that $J_{1} \cup J_{2,1,0}$ is a unique minima ideal of $S(X, Y)$. Let $M=J_{1} \cup J_{2,1,0}$ and N be a minimal ideal of $S(X, Y)$. Since N is an ideal of $S(X, Y)$, we get that $N=K(Z)$ for some $\varnothing \neq Z \subseteq S(X, Y)$. Since $J_{1} \varnothing N$, there exists $\alpha \in N$ with $|X \alpha| \geq 2$. Since $\alpha \in N=K(Z)$, we obtain that $|X \alpha| \leq|X \beta|,|Y \alpha| \leq|Y \beta|$ and $|X \alpha \backslash Y| \leq|X \beta \backslash Y|$ for some $\beta \in Z$. Let $\gamma \in J_{2,1,0}$. Then $|X \gamma|=2$ and so
$|X \gamma|=2=|X \alpha| \leq|X \beta|$. Since $\quad|Y|>1, \quad$ we have $|Y \gamma|=1 \leq|Y \alpha| \leq|Y \beta|$ and $|X \alpha \backslash Y|=0 \leq|X \alpha \backslash Y| \leq$ $|X \beta \backslash Y|$. Then $\gamma \in K(Z)=N$. Thus $J_{2,1,0} \subseteq N$ and so $J_{1} \cup J_{2,1,0} \in N$ which implies that $M=N$.
Lemma 3.6. $J_{1} \cup J_{2} \cup \ldots \cup J_{k}$ is an ideal of $S(X, Y)$ where $1 \leq k \leq n$.

Proof: Let $\quad \alpha \in J_{1} \cup J_{2} \cup \ldots \cup J_{k} \quad$ and $\beta, \gamma \in S(X, Y)$. Then $\alpha \in J_{i_{0}}$ for some $1 \leq i_{0} \leq k$ and thus $|X \alpha|=i_{0}$. Since $X \beta \alpha \gamma=(X \beta) \alpha \gamma \subseteq X \alpha \gamma$, we get that $\quad|X \beta \alpha \gamma| \leq|X \alpha \gamma| \leq|X \alpha|=i_{0}$. Then $|X \beta \alpha \gamma|=p$ for some $1 \leq p \leq i_{0}$. Hence $\beta \alpha \gamma \in J_{p} \subseteq$ $J_{1} \cup J_{2} \cup \ldots \cup J_{k}$.

An ideal $I Ø S(X, Y)$ of $S(X, Y)$ is a maximal ideal if J is an ideal such that $I \subseteq J Ø S(X, Y)$, then $I=J$.

Lemma 3.7. Let S be a semigroup with identity 1. If S has a maximal ideal, then it is unique.

Proof: suppose that S has a maximal ideal, say M. Let M^{\prime} be a maximal ideal of S. It is clear that $M \cup M^{\prime}$ is an ideal and $1 \notin M \cup M^{\prime}$. Since $M \subseteq M \cup M^{\prime}$ and M is a maximal ideal, we have $M \cup M^{\prime}=M$. Similarly, we have $M \cup M^{\prime}=M^{\prime}$. So $M=M \cup M^{\prime}=M^{\prime}$ and therefore, S has a unique maximal ideal of S.

If $\quad|X|=|Y|=1, \quad$ then $\quad S(X, Y)=G(X, Y) . \quad$ Thus $S(X, Y) \backslash G(X, Y)=\varnothing$. So we consider the case $|X|>1$.
Theorem 3.8. If $|X|>1$, then $S(X, Y) \backslash G(X, Y)$ is a unique maximal ideal of $S(X, Y)$.

Proof Let $a \in Y$ and α be the constant map with $X \alpha=\{a\} . \quad$ Then $\quad \alpha \in S(X, Y) \backslash G(X, Y), \quad$ so $S(X, Y) \backslash G(X, Y) \neq \varnothing$. By Lemma 3.6, we have $S(X, Y) \backslash G(X, Y)=S(X, Y) \backslash J_{n}=J_{1} \cup J_{2} \cup \ldots \cup J_{n-1}$ Is an ideal of $S(X, Y)$. We show that $S(X, Y) \backslash G(X, Y)$ is a maximal ideal of $S(X, Y)$. Let I be an ideal of $S(X, Y)$ such that $S(X, Y) \subseteq I Ø S(X, Y)$. We prove that $I=S(X, Y) \backslash G(X, Y)$ by supposing this is not true. Then there exist $\alpha \in I$ but $\alpha \notin S(X, Y) \backslash G(X, Y)$, i.e., $\alpha \in G(X, Y)$. Since $G(X, Y)$ is a group, we obtain that $\alpha^{-1} \in G(X, Y)$ and $1_{X}=\alpha \alpha^{-1} \in I$. Thus $I=S(X, Y)$ which is a contradiction. Therefore $I=S(X, Y) \backslash G(X, Y)$. So $S(X, Y) \backslash G(X, Y)$ is a maximal ideal of $S(X, Y)$. By Lemma 3.7, we obtain that
www.ijtra.com Special Issue 11 (Nov-Dec 2014), PP. 32-35 $S(X, Y) \backslash G(X, Y)$ is a unique maximal ideal of $S(X, Y)$.

Let ρ be a congruence on a semigroup S. We recall that ρ is a maximal congruence if δ is a congruence on S with $\rho \oslash \delta \subseteq S \times S$ implies $\delta=S \times S$.
Theorem 3.9 Let $S=S(X, Y)$ and $G=G(X, Y)$. Then $\rho=(S \backslash G \times S \backslash G) \cup(G \times G)$ is a maximal congruence on S .

Proof It is clear that ρ is a equivalence relation on S . Let $\alpha, \beta, \gamma \in S$ and $(\alpha, \beta) \in \rho$.Then $(\alpha, \beta) \in(S \backslash G \times S \backslash G)$ or $(\alpha, \beta) \in G \times G . \quad$ If $\quad(\alpha, \beta) \in(S \backslash G \times S \backslash G), \quad$ then $\gamma \alpha, \alpha \gamma, \gamma \beta, \beta \gamma \in S \backslash G \quad$ since $S \backslash G$ is an ideal of $S(X, Y)$. Thus $(\gamma \alpha, \gamma \beta),(\alpha \gamma, \beta \gamma) \in(S \backslash G) \times(S \backslash G) \subseteq \rho$. If $(\alpha, \beta) \in G \times G$, we consider two cases.

Case 1: $\gamma \in S \backslash G$. Since $S \backslash G$ is an ideal, we have $(\gamma \alpha, \gamma \beta),(\alpha \gamma, \beta \gamma) \in(S \backslash G) \times(S \backslash G) \subseteq \rho$.

Case 2: $\gamma \in G$. Then $\alpha, \beta, \gamma \in G$ and G is a group, so we obtain that $\gamma \alpha, \alpha \gamma \in G$ and $\gamma \beta, \beta \gamma \in G$. Thus $(\gamma \alpha, \gamma \beta),(\alpha \gamma, \beta \gamma) \in G \times G \subseteq \rho$.

Next, we show that ρ is a maximal congruence on S. Let δ be a congruence on S such that $\rho \oslash \delta \subseteq S \times S$. Since $\rho \oslash \delta$, there exists $(\alpha, \beta) \in(\delta \backslash \rho)$ with $\alpha \in S \backslash G$ and $\beta \in G$. Let k be the order of β. Then $1_{X}=\beta^{k} \delta \alpha^{k}$ where $\alpha^{k} \in S \backslash G$ since $S \backslash G$ is an ideal. Now, let $(\lambda, \mu) \in S \times S$. So $\lambda \delta \alpha^{k} \lambda$ and $\mu \delta \alpha^{k} \mu$ where $\alpha^{k} \lambda, \alpha^{k} \mu \in S \backslash G$ so $\alpha^{k} \lambda \rho \alpha^{k} \mu$. Since $\rho \subseteq \delta$, we have $\alpha^{k} \lambda \delta \alpha^{k} \mu$. Thus $\lambda \delta \mu$ and $\delta=S \times S$ as required.

ACKNOWLEDGMENT

This research is supported by the Damrongchaitham Foundation. The first author would like to thank the Graduate School Chiang Mai University.

REFERENCES

[1] W. Choomanee, P. Honyam and J. Sanwong, Regularity in semigroups of transformations with invariant sets, IJPAM., 87 (2013), No. 1, 151- 164.
[2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I and II, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I. 1961 and 1967.
[3] P. A. Grillet, Intersections of Maximal Ideals in Semigroups, MAA., 76 (1969), No. 5, 503-509.
[4] P. Honyam and J. Sanwong, Semigroup of transformations with invariant sets, J. Korean Math. Soc., 48 (2011), No. 2, 289-300.
[5] K. D. Magill Jr., Subsemigroups of S(X), Math. Japon., 11 (1966), 109-115.
[6] A. I. Malcev, Symmetric groupoids, Mat. Sbornik N. S. 31(73) (1952), 136-151.
[7] S. Nenthein, P. Youngkhong and Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. Appl., 16 (2005), No. 3, 307-314.

