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Abstract— Replacing the sequence of vectors with a net indexed 

by an ordered set where the set is endowed with a measure space, 

we obtain a generalization of discrete frames which is called 

continuous p-frames. The problem of combining the synthesis 

and analysis operators of these frames is solved in this paper. We 

also prove that a perturbation of a weakly measurable function G 

of a cp-frame F is again a cp-frame when there is a small enough 

gap between F and G. 

Index Terms— : Continuous p-frames, Duality mapping, 

Perturbation 

I.  INTRODUCTION 

A discrete frame is a countable family of elements 

in a separable Hilbert space which allows stable not 

necessarily unique decomposition of arbitrary 

elements into expansions of the frame elements. 

This concept was generalized by Ali, Antoine and 

Gazeau [1], to families indexed by an ordered set 

endowed with a Radon measure. These frames are 

known as continuous frames. For more studies 

about frame theory and continuous frames we refer 

to [1, 3, 4, 5]. We observe that various 

generalizations of frames have been proposed 

recently.  

Throughout this paper, (,) will be a measure 

space and  is a positive, -finite measure. X is a 

Banach space with dual X*. We choose 1<p<, and 

q such that 
1

p
+ 

1

q
=1. The normed dual X* of a Banach 

space X  is  itself a Banach space and hence has a 

normed dual of its own, denoted by X**. The 

mapping 
X
:XX**, x

X
x defines a unique


X
xX** by the equation, x,x*=x*,

X
x  for each

x*X* and xxX  for each xX. So 
X
:XX**

is an isometric isomorphism of X onto a closed 

subspace of X**. If X is a reflexive Banach space 

then 
X
:XX** is an isometric isomorphism of X

onto X**. 

A. 2  PRELIMINARIES 

Definition 2.1.  A countable family {g
i
}

i=1X* is a

p-frame for X if there  exist  constants  A,B>0  such 

that  

.))((

1

1

fBfgfA p

p

i

i  




 (2.1) 

{g
i
}

i=1 is a p-Bessel sequence if at least the upper p-

frame condition is satisfied.  

Definition 2.2.  Let H be a complex Hilbert space 

and (,) be a measure space. The mapping 

F:H is called a continuous frame for H  with 

respect  to (,), if:  

(i) F is weakly measurable, i.e., for each fH, 

  (, Ff  is a measurable  function  on  ,  

(ii) There exist constants A,B>0 such that  

.,)()(,
2

22
HffBdFffA   

(2.2) 

Now  we recall some theorems and lemmas which 

we use in this paper.  

Lemma 2.3. [8]. Suppose X and Y are Banach 

spaces and TB(X,Y). Then R(T)=Y if and only if 
*** ycyT   for some constant c>0 and for  each 

y*Y*. 

Theorem 2.4. [9]. Lp(,) is isometrically 

isomorphism to the dual space of Lq(,)  by the 

mapping ,),(),(: *  qpp LLK
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Kp()= 



 ()()d() for all Lp(,)  

and ).,(   qL   

We can define the isometrical isomorphism 

Kq=(Kp)*
q
:Lq(,)Lp(,)* , for which 

q
 

is the isometrical isomorphism  of ),( qL  onto 

Lq(,)** .  

Lemma 2.5. [7].  Given a bounded operator 

U:XY, the adjoint U*:Y*X* is surjective if and 

only if  U  has  a bounded inverse on its  range  

R(U).  

B. 3  CP-FRAMES 

Definition 3.1. The mapping F:X* is called a 

continuous p-frame or  a  cp-frame  for  X  with  

respect  to ( ,)  if:  

(i) F is weakly measurable, i.e., for each xX, 

wx,F()=F()(x)  is measurable on .  

(ii) There  exist  positive  constant s A  and   B such  

that  

 

 .))()(,(

1

xBdFxxA p
p

 




 (3.1) 

The constants A and B are called the lower and 

upper cp-frame bounds, respectively. F is called a 

tight cp-frame if A and B can be chosen such that 

A=B, and a Parseval cp-frame if A and B can be 

chosen such that A=B=1. F is called a cp-Bessel 

mapping for X with respect to (,), if (i) and the 

second inequality in (3.1) holds. In this case B  is  

called  cp-Bessel  constant.  

If  in the definition of a cp-frame, the measure space 

= N and  be the counting measure, then our cp-

frame will be a p-frame and so we expect  that  

some properties of p-frames can be satisfied in cp-

frames.  

Throughout  this  paper, we  simply say F is a cp-

frame for X  and  F  is a cp-Bessel  mapping  for  X,  

instead  of  F  is a cp-frame for X  with  respect  to  

(,)  and  F  is a cp-Bessel mapping for X  with  

respect  to  (,), respectively.  

Our study of a cp-frame is based on analysis of two 

operators U
F
:XLp(,),  defined by  

( ) , ( ) , , ,FU x x F x X             (3.2) 

   

and T
F
:Lq(,)X*  which  is  weakly  defined  

by  

( ) , ( ) , ( ) ( ), ( , ), .q

F FT x x T x F d L x X        


        

    (3.3)                                                             

It  is clear that if F is a cp-Bessel mapping, then U
F
 

is well-defined and bounded operator. U
F
 is called 

the analysis and T
F
 is called the synthesis  operator  

of  F.  

Lemma 3.2. Let F be a cp-frame for X. Then the 

operator U
F
:XLp(,) , given by (3.2), has a 

closed range and X is reflexive.  

Proof.  It is easy to verify that U
F
 has a closed 

range. By the cp-frame condition, X is isomorphic 

to R(U
F
), but R(U

F
) is reflexive because it is a 

closed subspace of the reflexive space Lp(,)

and therefore X is reflexive. 

Theorem 3.3  Let F:X* be  a cp-Bessel 

mapping for X with Bessel bound B. Then the 

operator T
F
:Lq(,)X* , weakly defined in 

(3.3),  is  well-defined,  linear  and  .BTF   

Lemma 3.4.  Let F:X* be  a  cp-Bessel  mappin 

g  for  X. Then:  

(i) U
*

F=T
F
(Kq)1.  

(ii)  If  X  is  reflexive,  then T
*

F=KpU
F

1

X .  

Theorem 3.5  Let X be a reflexive Banach space 

and F:X* be weakly measurable. If the mapping 

T
F
:Lq(,)X*  weakly defined by  

, ( ) , ( ) ( ), ( , ), .q

Fx T x F d L x X       


       

 

is a bounded operator and ,BTF   then F is a cp-

Bessel mapping for X.  
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Proof. Since FT  is well-defined and bounded, for all 

*f X  and ( , )qL   , we have 

1
*, , ( ) , ( ) ( ).F F XT f T f f F d      





         

For each **f X , we define 
1: , , ( ) .f XC f F      Since f is 

measurable and for each ( , )qL   , 

( ) ( ) ( )f d     


  , 

( , )p

f L   , by Theorem 2.4, we have  

 
1 *( ) ( ) ( )( ), .p

f FK T f     . 

Hence for each x X , 

1

1 * *

*

( , ( ) ( )) ( )

.

p
pp

F X F X

F

x F d K T x T x

T x B x

   



     

 



 

Theorem 3.6. Let X be a reflexive Banach space 

and F:X* be a weakly measurable mapping. 

Then F is a cp-frame for X if and only if FT  is a 

well-defined and bounded operator of Lq(,)  

onto X*. In this case, the frame bounds are 
1

1*
)(




FT  and FT .  

Proof. By Theorem 3.3 and 3.5, the upper cp-frame 

condition satisfies if and only if FT is well-defined 

and bounded operator of Lq(,)  onto X*. Now 

suppose that F is a cp-feame for X. Then FU has a 

bounded inverse on its range ( )FR U and by Lemma 

2.5, *

FU is surjective and therefore  FT  is a well-

defined  and bounded operator of Lq(,)  onto 

X*. By Lemma 3.4, for each x X , 

1 * *( ) .p

F F X F X FU x K T x T x T x      

On the other hand since   FT  is bounded and 

surjective. *

FT is one to one, hence *

FT has a 

bounded inverse on *( )FR T . So by Lemma 3.4, for 

each x X  we have 

* 1 * * 1( ) ( ) .X F F X F Fx x T T x T U x       

C. 4  CP-FRAME MAPPING AND ITS INVERTIBILITY 

In this section, in order to make a cp-frame 

mapping, we need a mapping from the Banach 

space Lp(,)  into it’s dual space, Lq(,) . 

For this aim we use the concept of duality mapping.  

Definition 4.1. The mapping 
X
 of X into the set of 

subsets of X*, defined by  

 ,,)(:{ ***** xxxxxxXxxX   

is  called the duality mapping on X.  

By the Hahn-Banach theorem, for each xX, 
X
x is 

nonempty and 
X
0=0. In general the duality 

mapping is set-valued, but for certain spaces it is 

single-valued and such spaces are called smooth.  

Definition 4.2.  Let F:X* be a cp-frame for X. 

The bounded mapping S
F
:XX* defined by 

S
F
=T

F
(Kq)1

L
p
(,)

U
F

 will be called a cp-frame 

mapping of F.  

Proposition 4.3.  Suppose that F:X* is a cp-

frame for X with frame bounds A and B. Then S
F
 

has the following properties:  

(i) S
F
=U

*

FL
p
(,)

U
F

.  

(ii) .,)(
2222 XxxBxxSxA F  .  

Definition 4.4.  A mapping [.,.] from XX into R is 

said to be a semi-inner product on X  if  it  has  

these  properties:  

(i) [x,x]0 for all xX and [x,x]=0 iff x=0.  

(ii) [x+y,z]=[x,z]+[y,z] for  all ,R  and  

for  all  x,y,zX.  

(iii) |[x,y]|2[x,x][y,y]  for  al l x,yX.  

The element xX is called (Giles) orthogonal to the 

element yX (denoted by xy), if [y,x]=0. If M is a 

linear subspace of X, the notation M is used to 

show the orthogonal complement of M in Giles 

sense, i.e. M={xX; xy, yM} .  
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Remark 4.5.  Let F:X* be a cp-frame for X. 

Suppose that Ker(T
F
) and (Ker(T

F
)) are 

topologically complementary in Lq(,) , then 

clearly the operator T
F
|
(Ker(T

F
))
 is invertible and 

T

F=(T

F
|
(Ker(T

F
))
)
1 is a bounded right inverse of T

F
.  

Definition 4.6.  Let F:X* be a cp-frame for X. 

Suppose that Ker(T
F
) and (Ker(T

F
)) are 

topologically complementary in Lq(,) , we 

define the mapping K:X*X by 

K=
1

X (T

F)*

L
q
(,)

T

F.   

Lemma 4.7. Let F:X* be a cp-frame for X. 

Suppose that Ker(T
F
) and (Ker(T

F
)) are 

topologically complementary in Lq(,) . Then:  

(i) 
2

2

1
))((

X
g

B
ggK  , where B denotes an upper 

cp-frame bound for F.  

Moreover, when the operator T

FT

F
 is adjoint 

abelian, the following assertions hold:  

(ii) S
F
 is invertible and S

1

F =K.  

(iii) S
1

F =U
1

F (Kp)1
L

q
(,)

T

F.   

D. 5  DUALS OF CP-BESSEL MAPPINGS 

In this section, X is an infinite dimensional, 

reflexive Banach space. 

Definition 5.1. [6].  A sequence {e
i
}

i=1 in X is called 

a Schauder basis of X, if for each xX there is a 

unique sequence of scalars (a
i
)

i=1, called the  

coordinates of  x, such that x= 
i=1


 a

i
e

i
.  

Let {e
i
}


i=1 be a Schauder basis of a Banach space X. 

For j N and x= 
i=1


 a

i
e

i
, denote f

j
(x)=a

j
. Using 

Theorem 6.5 in [6], f
j
X*. The functionals {f

i
}


i=1 are 

called the associated biorthogonal functionals 

(coordinate functionals) to {e
i
}


i=1 and for each xX, 

we have x= 
i=1


 f

i
(x)e

i
. 

We will denote the biorthogonal functionals {f
i
} by 

{e
*

i },  and say that {e
i
,e

*

i } is a Schauder basis of X.  

Theorem 5.2  Let F:X* be a cp-Bessel mapping 

for X and G:X** be a cq-Bessel mapping for X*. 

Then the following assertions are equivalent: 

(i) For each xX, x=
1

X T
G
(Kp)1T

*

FX
x. 

(ii) For each gX*, g=T
F
(Kq)1T

*

G(
*

X)1g. 

(iii) For each xX and gX*

x,g= 



 x,F()g,G()d() . 

(iv) For each Schauder basis {e
i
,e

*

i } of  X,  

 
Error! 

Definition 5.3.  Let F:X* be a cp-Bessel 

mapping for X and G:X** be a cq-Bessel 

mapping for X*. We say that (F,G) is a c-dual pair, 

if one of the assertions of Theorem 5.25, satisfies.  

In this case F is called a cp-dual of G and by 

Theorem 5.2, we can say that G is a cq-dual of F.  

Definition 5.4.  Let F:X* be a cp-frame for X. 

We say that F is independent, provident that for 

each measurable function :C and xX,  

 



 x,F()()d()=0,  

implies that =0.  

Theorem 5.5  Let F:X* be a cp-frame for X and 

(E)k>0, for each measurable set E, except E=. 

Then, we have the following assertions:  

(i) If F is an independent cp-frame for X, then there 

exists a unique cq-frame, G:X** for X*, such 

that (F,G) is a c-dual pair.  

(ii) If Ker(T
F
) and (Ker(T

F
)) are topologically 

complementary in Lq(,) , then there exists a cq-
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frame G:X** for X*, such that (F,G) is a c-dual 

pair.  

E. 6  PERTURBATION OF CP-FRAMES 

Perturbation of discrete frames has been discussed 

in [2]. The proof of the following theorem is based 

on the following lemma, which was proved in [2].  

Lemma 6.1.  Let U be a linear operator on a 

Banach space X and assume that there exist 


1
,

2
[0,1)  such that for each xX,  

 |xUx|
1
|x|+

2
|Ux|. 

Then U is bounded and invertible. Moreover for 

each xX,  

 
1

1

1+
2

|x||Ux| 
1+

1

1
2

|x|,  

and  

 
1

2

1+
1

|x||U1x| 
1+

2

1
1

|x|. 

Theorem 6.2 Let F be an independent cp-frame for 

X and (E)k>0, for each measurable set E, except 

E=. Suppose that G:X* is weakly measurable 

and assume that there exist constants 
1
,

2
,0 such 

that max(
1
+ 

A

,
2
)<1. Let for all Lq(,)  and 

x in the unit sphere of X,  

 

 

.)()(,)()()(,)()()()(,)( 21   


dGxdFxdGFx

  

   

Then G:X* is a cp-frame for X with bounds  

 A[ 

1(
1
+ 

A

)

1+
2

]    and   B[ 

1+
1
+ 

B

1
2

],  

where A and B are the frame bounds of F. 
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