
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 41 (AVALON) (March 2016), PP. 50-53

50 | P a g e

COMPARATIVE STUDY ON KEYWORD

SEARCHING TECHNIQUES OVER ENCRYPTED

DATA IN CLOUD COMPUTING

Kshitija Jagtap#1, Shravani Kulkarni#2, Shuchita Kapoor#3, Vishakha Thakur#4, Rashmi

Dhumal*5

#Computer Engineering, Mumbai Univesity

Terna Engineering College, Nerul
1jagtapkshitija40@gmail.com

2shrau94@gmail.com
3shuchitakapoor99@gmail.com

4vishakhat98@gmail.com

Assistant Professor, Terna Engineering College.Nerul
5rashmisalvi@gmail.com

Abstract- In cloud computing, clients outsource their data

to the cloud storage servers. That data may contain

sensitive or personal information and the cloud servers

cannot be fully trusted in protecting that data.

Confidentiality, integrity and availability of that data is a

major issue. Encryption is a way to protect the

confidentiality of the data. But, encryption makes it

difficult to perform effective searches over encrypted data.

Traditional search schemes allow a user to securely search

over encrypted data through keywords and selectively

retrieve files of interest. But the problem with it is that

these only support exact keyword search. That is, tolerance

for minor typos and format inconsistencies is not considered.

Which can easily happen by a typical user. This

drawback makes existing techniques unsuitable in
Cloud Computing as it affects system usability, making

user searching experiences very frustrating. Fuzzy
keyword search is used in order to consider the minor
typos or format inconsistencies that may happen by the
user. So, even if the exact match of the keyword provided
by the user is not found in the files, the keywords which are
closest possible match are considered. And, the file ID
having those closest matched keywords are returned. In
this paper, we compare three fuzzy keyword search
schemes including wildcard based technique, gram based
technique and symbol-based trie-traversal scheme.

Keywords-Fuzzy keyword search, Gram-based search,

Wildcard based search, Symbol based search, Encryption.

I. INTRODUCTION

In remote storage, the data of the users is stored into the storage

server to ensure confidentiality, integrity and availability of

the data. Later, if the user wants to receive his data securely

through the cloud network, the user may receive the whole data

from the server. This induces the communication overload.

The user may want to retrieve the data related to a specific

keyword only. In this case, we need keyword searching

schemes over the encrypted data which are secure as well

as efficient and could be easily implemented. In a keyword

search technique, a user queries the server to find a

particular keyword or a phrase. That keyword is then matched

with the fuzzy keyword sets. Fuzzy keyword here means that

those keywords approximately match with the actual keyword

present in the files stored on the cloud. Fuzzy keyword search

is used in order to consider the minor typos or format

inconsistencies that may happen by the user. So, even if the

exact match of the keyword provided by the user is not found

in the files, the keywords which are closest possible match are

considered. And, the file ID having those closest matched

keywords are returned. There are several techniques for fuzzy

keyword generation that are considered in this paper.

II. DIFFERENT SEARCHING TECHNIQUES

From all the files stored on the cloud, to search desired

file, the user enters words or phrases of which
fuzzy
keywords are generated to make the searching easier

and quick. There are various techniques for the

generation for fuzzy keywords: Wildcard-based

Technique, Gram- based Technique and Symbol-

based trie-traversal Scheme. The files are first

encrypted and then stored into the cloud server to

ensure security. Along with these encrypted files

a table is constructed which

mailto:1jagtapkshitija40@gmail.com
mailto:2shrau94@gmail.com
mailto:3shuchitakapoor99@gmail.com
mailto:4vishakhat98@gmail.com
mailto:5rashmisalvi@gmail.com

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 41 (AVALON) (March 2016), PP. 50-53

51 | P a g e

contains the keywords present in the file and the

generated fuzzy keywords. When a user searches a

keyword it is matched with the fuzzy keywords present

in the table. So, even if the exact keyword is not

matched or there are any typing mistakes done by the user

keyword match will be found based on fuzzy keywords

and the desired files will be retrieved after decryption.

A. Wildcard-based Technique

The wildcard-based fuzzy set of w with edit distance d is

denoted as Sw,d. Each wildcard represents an edit

function on w. The function for wildcard-based fuzzy

set construction is described in Algorithm 1. For

example, for the keyword APPLE with the pre-set edit

distance 1, its wildcard-based fuzzy keyword set is

{APPLE, *APPLE, *PPLE, A*PPLE,A*PLE, · ·· ,

APP*E, APPL*, APPLE*}. The total number of

variants on APPLE constructed are 11 + 1, instead of 11

× 26 + 1. Generally, for a given keyword w with length

l, the size will be only 2l + 1 + 1 where * is put at every

position, between every letter, at the beginning and the

end of the keyword. Also the keyword itself is

considered as a fuzzy keyword. The storage overhead

can be reduced if larger pre-set edit distance is taken i.e,

with the respect to the traditional technique, this

technique can help reduce the storage of the index from

30GB to approximately 40MB[5].

Algorithm 1: Wildcard-based Fuzzy Set Construction

1: procedure CreateWildcardSet(w, d)
2: if d >1 then // d = edit distance

2.1: Call CreateWildcardSet(w, d −1);

3: end if

4: if d = 0 then

4.1: Set S′w, d= {w};

5: else
5.1: for (k ←1 to |S′w,d−1|) do

5.1.1: for j ←1 to 2 ∗|S′w,d−1[k]| + 1 do

5.1.1.1: if j is odd then

5.1.1.1.1: Set fuzzy_word as (S′w,d−1)[k];

5.1.1.1.2: Insert ⋆at position [(j + 1)/2];

5.1.1.2: else
5.1.1.2.1: Set fuzzy_word as (S′w,d−1)[k];

5.1.2.2: Replace [j/2] character with ⋆;

5.1.1.3: end if
5.1.1.4: if fuzzy_word is not in S′w,d−1 then

5.1.1.4.1: Set S′w,d= S′w,d∪{fuzzy_word};

5.1.1.5: end if

5.1.2: end for

5.2: end for
6: end if
7: end procedure

B. Gram-based Technique

The Gram-based technique used for constructing fuzzy

set is based on grams. The gram of a string is a substring

that can be used as a signature for efficient and

approximate search [1]. Gram can be used for

constructing inverted list as well as for the matching

purpose[2-4]. In this technique, any edit function will

affect at most one specific character of the keyword,

leaving all the remaining characters untouched. Thus,

the fuzzy keyword set for a keyword w with l single

characters supporting edit distance d can be constructed

as Sw,d. For example, the gram-based fuzzy set for

keyword APPLE with edit distance 1 is {APPLE,

APLE, APLE, APPE, APPL}. Compared to the previous

technique, the gram-based technique can further reduce

the storage of the index from 40MB to approximately

10MB[5]. The function for gram-based fuzzy set

construction is described in Algorithm 2.

Algorithm 2 Gram-based Fuzzy Set Construction
1: procedure CreateGramFuzzySet(wi, d)
2: if d >1 then

2.1: Call CreateGramFuzzySet(w, d −1);

3: end if

4: if d = 0 then
4.1: S′w,d= {w};

5: else

5.1: for (k ←1 to |S′w,d−1|) do

5.1.1: for j ←1 to 2 ∗|S′w,d−1[k]| + 1 do

5.1.1.1: Set fuzzy_word as S′w,d−1[k];

5.1.1.2: Delete the j character;

5.1.1.3: if fuzzy_word is not in S′w,d−1 then

5.1.1.3.1: Set S′w,d= S′w,d∪{fuzzy_word}

5.1.1.4: end if

5.1.2: end for
5.2: end for

6: end if

7: end procedure

C. Symbol-based Trie-Traversal Search Scheme

For achieving efficiency in searching results, we

propose another technique known as symbol-based trie-

traversal search scheme. In this technique, a multi-way

tree is constructed for storing the fuzzy keyword set

{Sw,d}w∈W over a finite symbol set. The basic idea

behind this is that all trapdoors sharing a common prefix

may have common nodes. The root is always associated

with an empty set. The symbols in the trapdoor can be

recovered in a search from the root to the leaf that ends

the trapdoor. All fuzzy words can be found by a depth-

first search. The encrypted file identifiers or the file id

will be stored at the ending node or the leaf. With the

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 41 (AVALON) (March 2016), PP. 50-53

52 | P a g e

returned search results, the user may retrieve the files of

his interest using those file ids. These files are then

decrypted and provided to the users. The user access

structure is created when a user types more than one

keyword.

The following example for user access structure shows

that, a user requires information about the student who is

a girl, should be an Indian and he/ she either scored

grade A or is studying in University X.

Fig1. Example for multi-way tree

The function for symbol-based trie-traversal search

scheme is described in Algorithm 3.

Algorithm 3 SearchingTree

1: procedureSearchingTree({T′w})

2: for i←1 to |{T′w }| do
2.1: set currentNodeAs Root of Gw;
2.2: for j ←1 to l/n do

2.2.1: Set α as αj in the i T′w;

2.2.1.1: if no child of currentNodeContains α then

2.2.1.1.1: break;

2.2.1.2: end if
2.2.2: Set currentNodeAs child containing α;

2.3: end for

2.4: if currentNodeIsLeafNode then

2.4.1: Append currentNode.FIDS to ResultIDSet;

2.4.2: if i = 1 then

2.4.2.1: return resultIDSet;
2.4.3: end if

2.5: end if

3: end for

4: return resultIDSet;

5: end procedure

The main advantage of this technique is that it maintains

keyword privacy by efficiently utilising encrypted data

form the remote storage.[5]

IV. COMPARISON BETWEEN DIFFERENT

TECHNIQUES

TABLE I

COMPARISON

Parameter Fuzzy keyword search schemes

Wildcard
based

technique

Gram
based

technique

Symbol based
trie-traversal

scheme

Storage size approximat
ely 40MB

approximat
ely 10MB

approximately
13MB

Keywords
generated

2l+1+1
l= length of
original
Keyword.

l-t+1
l= length of
original
keyword
t= edit
Distance.

Where a
multi-way

tree is

constructed

for storing

the fuzzy

keyword set.

Searching
time

Moderate
searching
time
required
because of
the
presence of
*.

Less
searching
time is
required
because
keywords
generated
are less.

Depth first
search over a
multi-way tree
requires a lot
of time.

Wildcard based technique reduces the storage of the

index from 30GB to approximately 40MB as compared

to the straightforward approach. For eg, for the keyword

CAT, The total number of variants = (3*2)+1+1=8

instead of 7×26+1=183.

Compared to wildcard based construction, gram-based

construction can further reduce the storage of the index

from 40MB to approximately 10MB under the same

setting as in the wildcard-based approach.

For the example CAT, the total number of variants for edit

distance 1 are 3 i.e, 3-1+1.

V. CONCLUSION

In this paper we have presented different searching

techniques for fuzzy keyword generation: Wildcard-

based search technique, Gram-based search technique,

Symbol-based trie-traversal search technique. Wildcard

based technique generates huge number of keywords so

there is more probability of getting the file to the

matching keyword and memory required to store the

keyword is less, as compared to the traditional approach.

Also the number of keywords generated are much more

compares to traditional approach. Gram based technique

is simple for large n i.e. the number of keywords

generated. Symbol-based trie-traversal search technique

uses depth first search for the traversal and matching of

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 41 (AVALON) (March 2016), PP. 50-53

53 | P a g e

keyword. Using depth first search it retrieves the file ID

as per the matched keyword. As depth first search is

time consuming, this technique requires more time for

the execution.

We conclude that out of the three techniques, wildcard-

based technique is the most efficient as it generates huge

number of keywords for the searched word and yet takes

less space and memory.

ACKNOWLEDGEMENT

The authors would like to thank the college for giving

them a platform to showcase their paper. They would also

like to thank their assistant professor for supporting and

guiding them in the creation and experimentation of this

paper.

REFERENCES

[1] S. Ji, G. Li, C. Li, and J. Feng, “Efficient interactive fuzzy

keyword search,” in Proc. of WWW’09, 2009.

[2] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust identification of

fuzzy duplicates,” in Proc. of ICDE’05.

[3] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity

joins,” in Proc. of VLDB’06, 2006, pp. 918–929.

[4] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin, “An efficient

filter for approximate membership checking,” in Proc. of

SIGMOD’06.

[5] Jin Li, Qian Wang, “Enabling Efficient Fuzzy Keyword Search

over Encrypted Data in Cloud Computing”

