
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 11 (Nov-Dec 2014), PP. 09-12

10 | P a g e

FIR FILTER IMPLEMENTATION BY USING BIT

LEVEL TRANSFORMATION OF ADDER TREES

FOR MCMS
R Srinivasa Rao1, KSV Pavan Kumar1, MD Javeed2,

1Dept. of ECE, Khammam Institute of Technology and Science

Khammam, India
2Dept. of Electronics, Mewar University

Ghaziaba, India
1srinivasaug8@gmail.com, 2pavan101088@gmail.com, 3javeed@campuswave.in

Abstract---- Bit wise operations are used in many applications like

digital signal processing and telecom etc. By the languages of high

level programming in general purpose processors has become

very costlier. In this paper we have shown Reverse bit level

optimization for adder trees for multiple constant multiplications

for the efficient implantation of Finite Impulse Response filters.

Which decreases the cost as well the time is decreased by 21% as

compared with the existing system. The code for the bit level

optimization written in verilog and implemented in Xilinx

Spartan 3e FPGA kit.

Index Terms---- Multiple constant multiplications, Adder

trees, Fir fiter, Bit level optimization.

I. INTRODUCTION

Finite impulse response (FIR) digital filters are widely

used as a basic tool in many digital signal processing (DSP)

and communication applications. The complexity of a FIR

filter is largely dominated by the multiplication of input

samples with filter coefficients. But fortunately, the filter

coefficients are constants for a given filter, so that

multiplications are implemented by a network of adders,

subtractors, and hardwired shifts, where the number of adders

and subtractors are minimized by a constant multiplication

scheme.

In case of a transposed direct-form FIR filter, the recent

most input sample at any given clock period is multiplied with

all the filter coefficients. A set of intermediate results are

generated in this case, and shared across all the multiplications

in order to minimize the total number of additions/subtractions

using multiple constant multiplication (MCM) techniques as

shown in Figure 1. Each such intermediate result in an MCM

process corresponds to one of the common sub-expressions

(CS) of the set of constants to be multiplied [1]. An finite

impulse response (FIR) filter is a digital filter that works on

digital inputs. A digital filter is a system that performs

mathematical operations on sampled, discrete time signal to

reduce or enhance certain aspect of that signal. There are two

types of digital filter mainly used that are infinite response

(IIR) filter and finite impulse response (FIR) filter [2].

Figure 1 MCM composition block

There are two basic FIR structures, [3] direct form and

transposed form, for a linear-phase even-order FIR filter. In

the direct form, the multiple constant multiplication

(MCM)/accumulation (MCMA) module performs the

concurrent multiplications of individual delayed signals and

respective filter coefficients, followed by accumulation of all

the products. Thus, the operands of the multipliers in MCMA

are delayed input signals x[n − i] and coefficients ai. The

results of individual constant multiplications go through

structure adders (SAs) and delay elements. In order to avoid

costly multipliers, most prior hardware implementations of

digital FIR filters can be divided into two categories:

multiplier less based and memory based [4].

II. BIT REVERSE FUNCTION

Bitwise operations are used extensively in many

application domains, such as cryptography and

telecommunications, etc. However, for applications written in

high-level programming languages and executed on general-

purpose processors, accessing and computing bit-values are

relatively expensive, and bit level parallelism is not well

exploited. This is mainly due to the lack of support in target

machines, as well as high-level programming languages, such

as C/C++. Most general-purpose processor architectures and

high level programming languages do not support bitwise

memory access and require a series of load/shift/mask/store

instructions to implement simple bitwise operations, such as

bit accessing and bit setting [7].

Customized hardware accelerators provide a promising

approach to assisting general-purpose processors in exploiting

performance of bitwise computation-intensive applications.

Today, we can put more than one billion transistors in a single

chip [5], and modern FPGAs allow users to exploit parallelism

in applications by hundreds of thousands of logic cells and

prefabricated IPs [6]. As RTL coding time is increasingly

recognized as a significant component of the overall effort to

solution, automated design processes and tools which compile

higher-level abstraction into optimized hardware are gaining

more and more popularity.

However, high-quality implementations are difficult to

achieve automatically, especially when the description of the

functionality is written in a high-level software programming

language. For bitwise computation-intensive applications, one

of the main difficulties is the lack of bit-accurate descriptions

in high-level software programming languages. The wide use

of bitwise operations in certain application domains calls for

specific bit-level transformation and optimization to assist

hardware synthesis of algorithmic descriptions [7].

mailto:srinivasaug8@gmail.com
mailto:pavan101088@gmail.com
mailto:javeed@campuswave.in

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 11 (Nov-Dec 2014), PP. 09-12

11 | P a g e

Figure 1 and 2 shows example with a bit reversing

function, where the bit reverse function takes a 32-bit integer

as input and gets an output in the reverse bit order. The data-

flow graph for the function is shown in Figure 1, while the

optimal implementation is shown in Figure 2

Fig.2 Bit reversible function data flow.

Fig.3 Implementation of bit reversible function

We can clearly see that the direct implementation based on

the data-flow graph would use many more logical components

and also have a longer latency compared to the optimal one,

which only uses 32 wires to link the bits directly in the reverse

order.

We can see from the example that efficient bit-level

transformation and optimization for operations in algorithmic

descriptions will lead to a much more direct and compact

description. This will help the high level synthesis to generate

better RTL designs for bitwise computation-intensive designs,

and thus achieve better final implementations. Otherwise, in

the absence of such optimization, the synthesis process can be

misled by inaccurate area and timing estimation and thus

generate suboptimal microarchitecture. It is often too late for

the downstream RTL or logic synthesis and optimization

techniques to make up for the QoR loss caused by the mistakes

during compiler transformations.

III. PROPOSED SYSTEM

The common practice of handling the summation of CS

terms of each coefficient is to use the tree-height minimization

algorithm [1] to produce a height optimum adder-tree. Fig. 4

gives an example of the schedule for an adder-tree on the left

with minimum delay.

Note that either a positive or negative sign is associated

with each input term (see Fig. 2(a)), which denotes whether

the corresponding term should be added to or subtracted from

the summation. These signs also determine whether an

addition operation or a subtraction operation should be used

when the algorithm collapses a pair of terms in the adder-tree

based on the following rules. (1) If two input edges are of the

same sign, an ADD will be used; otherwise, it will be a SUB.

(2) The sign of the output edge is always the same as that of

the “left” input edge (i.e., theminuend edge in the subtraction

case).Using these two rules, it is possible that the final term

producing the summation result may carry a negative sign,

such that a negation is needed after the adder-tree to correct

the value. For an FIR filter, results from multiple adder-trees

are accumulated by a structural

adder-register line. So the negation can be eliminated by

replacing the structural adder with a subtractor (see coefficient

in Fig. 1 for an example).

Fig. 4 Adder tree with delay and signs

Fig.5 Bit level optimization of adder tree

IV. FIR FILTER MINIMIZAION

 Finite impulse response (FIR) digital filter is one of the

fundamental components in many digital signal processing

(DSP) and communication systems. It is also widely used in

many portable applications with limited area and power

budget. A general FIR filter of order M can be expressed as

Y[n]= 𝑎iƩm-1
i=0 x[n−l]

Firstly, the total number of ADD/SUB operators needed to

sum up M input terms is M-1.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 11 (Nov-Dec 2014), PP. 09-12

12 | P a g e

V. RESULTS AND SIMULATION

Implementation is done with Xilinx ISE tool and vertex

Spartan 3e FPGA kit. The code is written in verilog. A simple

logic is shown below for the reverse bit level function.

Op = (((Ip>>i)&1) << (31-i))

The results have shown the speed increased by 21% the

figure 6 shows the timing results. Figure 7 shows the RTL

view of the reverse bit level function.

Figure 6 Timing details

Figure 7 RTL view of reversible bit level function

VI. CONCLUSION

We have implemented the Finite impulse response filter by

using the bit level transformation and optimization. Although

the designs mostly based on the direct form of FIR filter, we

have considered the transposed form of FIR filter at which the

results have shown that speed is increased by 21% comparing

to the other techniques.

REFERENCES

[1] Yu Pan and Pramod Kumar Meher, “Bit-Level

Optimization of Adder-Trees for Multiple Constant

Multiplications for Efficient FIR Filter Implementation”

IEEE transactions on circuits and systems—i: regular

papers, vol. 61, no. 2, february 2014

[2] Deepshikha Bharti #1, K. Anusudha*2, “High Speed FIR

Filter Based on Truncated Multiplier and Parallel Adder”

International Journal of Engineering Trends and

Technology (IJETT) – Volume 5 Number 5 - Nov 2013.

[3] Hsiao S.F,Zhang Jian J.H, and Chen C.H, MAY 2013,

Low-Cost FIR Filter Designs Based on Faithfully Rounded

Truncated Multiple Constant Multiplication/Accumulation,

VOL. 60, NO. 5 , pp no 287-292

[4] Senthilkumar, M.Ramani.S, “ FPGA Implementation of

Digital Fir Filter Based On Truncated Multiplier” IOSR

Journal of Electronics and Communication

Engineering(IOSR-JECE) e-ISSN: 2278-2834, p-ISSN:

2278-8735 PP 44-49

[5] "International Technology Roadmap for Semiconductors,

2007 Edition", Semiconductor Industry Association.

[6] http://www.xilinx.com, Xilinx Website.

[7] Jiyu Zhang*, Zhiru Zhang+, Sheng Zhou+, Mingxing Tan*,

“Bit-Level Transformation and Optimization for Hardware

Synthesis of Algorithmic Descriptions”.

