
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 62-66

62 | P a g e

STUDY OF AGENT ASSISTED METHODOLOGIES

FOR DEVELOPMENT OF A SYSTEM
Reshma Kazmi, Brijesh Pandey, Namarata dhandha

(Goel Institute of Technology and Management)

Abstract. Agent Assisted Methodologies have become an

important subject of research in advance Software Engineering.

Several methodologies have been proposed as, a theoretical

approach, to facilitate and support the development of complex

distributed systems. An important question when facing the

construction of Agent Applications is deciding which

methodology to follow. Trying to answer this question, a

framework with several criteria is applied in this paper for the

comparative analysis of existing multiagent system

methodologies. The results of the comparative over two of them,

conclude that those methodologies have not reached a sufficient

maturity level to be used by the software industry. The

framework has also proved its utility for the evaluation of any

kind of Agent Assisted Software Engineering Methodology.

I. INTRODUCTION

The aim of state of the art is to provide an overview of the rapidly

evolving area of multi-agent systems (MAS) and its related

methodologies. This leads to a discussion of what makes an agent

oriented methodologies that can be used to build MAS. In this

chapter literature concerning agent systems and agent oriented

methodologies is reviewed in detail. The field of agent oriented

methodologies is examined. The aim is establishing the

characteristics of agent oriented methodologies, and seeing how

these characteristics are suited to develop multi-agent systems. An

analysis of agent oriented methodologies is examined giving a

clearer picture of their application domain, advantages and

limitations.

Designing and building high quality industrial-strength

software is difficult. Indeed, it has been claimed that such

development projects are among the most complex

construction tasks undertaken by humans. Against this

background, a wide range of software engineering paradigms

have been devised (e.g., procedural programming, structured

programming, declarative programming, object-oriented

programming, design patterns, application frameworks and

component-ware). Each successive development either claims

to make the engineering process easier or to extend the

complexity of applications that can feasibly be built. Although

there is some evidence to support these claims, researchers

continually strive for more efficient and powerful software

engineering techniques, especially as solutions for ever more

demanding applications are required.

This paper will argue that analyzing, designing and

implementing software as a collection of interacting,

autonomous agents (i.e., as a multi-agent system represents a

promising point of departure for software engineering. While

there is some debate about exactly what constitutes an

autonomous agent and what constitutes interaction, this work

seeks to abstract away from particular dogmatic standpoints.

Instead, we focus on those characteristics for which there is

some consensus. From this standpoint, the paper’s central

hypothesis will be advanced: for certain classes of problem

(that will be defined), adopting a multi-agent approach to

system development affords software engineers a number of

significant advantages over contemporary methods. Note that

we are not suggesting that multi-agent systems are a silver

bullet there is no evidence to suggest they will represent an

order of magnitude improvement in software engineering

produc2tivity. However, we believe that for certain classes of

application, an agent-oriented approach can significantly

improve the software development process.

In seeking to demonstrate the efficacy of the agent-

oriented approach, the most compelling form of analysis

would be to quantitatively show how adopting such techniques

had improved, according to some standard set of software

metrics, the development process in a range of projects.

However, such data is simply not available (as it is still not for

more established methods such as object-orientation).

However, there are compelling arguments for believing that an

agent-oriented approach will be of benefit for engineering

certain complex software systems. These arguments have

evolved from a decade of experience in using agent

technology to construct large-scale, real world applications in

a wide variety of industrial and commercial domains.

The contribution of this paper is twofold. Firstly, despite

multi-agent systems being touted as a technology that will

have a major impact on future generation software (“pervasive

in every market by the year 2000” and “the new revolution in

software”), there has been no systematic evaluation of why

this may be the case. Thus, although there are an increasing

number of deployed agent applications for a review, nobody

has analysed precisely what makes the paradigm so effective.

This is clearly a major gap in knowledge, which this paper

seeks to address. Secondly, there has been comparatively little

work on viewing multi-agent systems as a software

engineering. This shortcoming is rectified by recasting the

essential components of agent systems into more traditional

software engineering concepts, and by examining the impact

on the software engineering life-cycle of adopting an agent-

oriented approach.

II. THE NATURE OF COMPLEX SOFTWARE

SYSTEMS

Industrial-strength software is complex in nature: it is

typically characterised by a large number of parts that have

many interactions. Moreover this complexity is not accidental

[4]: it is an innate property of the types of tasks for which

software is used. The role of software engineering is therefore

to provide structures and techniques that make it easier to

handle this complexity. Fortunately, this complexity exhibits a

number of important regularities:

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 62-66

63 | P a g e

 Complexity frequently takes the form of a

hierarchy1. That is, the system is composed of inter-

related sub-systems, each of which is itself a

hierarchy. The precise nature of the organisational

relationships varies between sub-systems, although

some generic forms

 (such as client-server, peer, team) can be identified.

Organisational relationships are not static: they can,

and frequently do, vary over time.

 The choice of which components in the system are

primitive is relatively arbitrary and isdefined very

much by the observer’s aims and objectives.

 Hierarchic systems evolve more quickly than non-

hierarchic ones of comparable size. In other words,

complex systems will evolve from simple systems

much more rapidly if there are stable intermediate

forms, than if there are not.

 It is possible to distinguish between the interactions

among sub-systems and the interactions within sub-

systems. The latter are both more frequent (typically

at least an order of magnitude more) and more

predictable than the former. This gives rise to the

view that complex systems are nearly decomposable.

Thus, sub-systems can be treated almost as if they are

independent of one another, but not quite since there

are some interactions between them. Moreover,

although many of these interactions can be predicted

at design time, some cannot.

III. AGENT ORIENTED METHODOLOGIES

In order to be able to perform a comprehensive literature

review for the agent oriented methodologies, "what the meaning of

the methodology is" needs to be precisely defined before starting

this discussion. A good methodology should provide the models

for defining the elements of the multi-agent environment (agents,

objects and interactions). A good methodology should also

provide the design guidelines for identifying these elements, their

components and the relationships between them. Any

methodology aims to provide a set of guidelines that covers the

whole lifecycle of the system development. The guidelines should

cover both the technical as well as the management aspects.

It is also important for a methodology to provide notations

which allow the developers to model the target system and its

environment. In addition to the methodology, there are also tools

that support the use of such methodologies. For instance, diagram

editors help developers drawing symbols, models described in the

methodology. The Rational Unified Process (RUP) is a good

example of a software engineering methodology (Kruchten 2000).

It uses the notation described in the Unified Modelling Language

(UML) (Booch 1998) and its typical tool support is Rational Rose.

IV. GAIA METHODOLOGY

Gaia methodology (Wooldridge 2000) was developed by

Wooldridge et-al. for analysis and design of agent systems.

Gaia is enhanced by Zambonelli in 2003. Gaia is a general

methodology that supports both levels of Micro and Macro

development of agent systems. Micro level relates to agent

structure while Marco level relates to agent society and

organizational structure. Gaia includes an analysis and design

phase and does not explicitly support an implementation

phase.

Gaia starts with the analysis phase as is given in figure 1,

whose aim is to collect and organize the specification. This is

the basis for the design of the computational organization.

Then it continues with the design phase, which aims to define

the system organizational structure. The definition is in terms

of the system’s topology and control system to identify the

agent model and service model.

Subdivide system into

 Sub-organization

Preliminary

Role Model

Organizational

Rules

Preliminary

Interaction Model

Organizational

Structure

Catalogue of

Organizational

Patterns

Interaction

Model
Roles Model

Agent Model Services Model

Analysis

Phase

Design

 Phase

Environmental

Model

Figure 1 Gaia methodology Models

V. HLIM METHODOLOGY

HLIM methodology is considered to be one of the

important agent oriented methodologies. It was developed in

1999 by M. Elammari and W. Lalonde. It allows the

development of agent based systems from user requirements.

The methodology models the external and internal behavior of

agents. It also provides a means for both the visualization of

the behavior of systems’ agents and the definition of how the

behavior is achieved. The methodology provides a systematic

approach for generating system definitions from high-level

designs which can be implemented. The methodology captures

effectively the complexity of agent systems, agents’ internal

structure, relationships, conversations, and commitments.

Figure 3.3 shows the models of HLIM methodology. The

HILM methodology consists of two phases (the discovery

phase and definition phase). The discovery phase is an

exploratory phase that leads to the high-level model definition.

The agents are discovered and their high-level behaviour is

identified. The discovery phase includes only the high-level

model.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 62-66

64 | P a g e

Figure 2 HLIM methodology Models

VI. THE PASSI METHODOLOGY

The PASSI methodology is considered to be one of the

important agent oriented methodologies that are object

oriented based methodologies. It was developed in 2002 by

Cossentino and Potts. PASSI is composed of five models that

address different design concerns and twelve steps in the

process of building a model.

PASSI uses UML as the modelling language because it is

widely accepted both in the academic and industrial worlds. Its

extension mechanisms facilitate the customized representation

of agent-oriented designs without requiring a completely new

language. Extension mechanisms here refer to constraints,

tagged values and stereotypes. The models and phases of

PASSI are (see figure 3):

Figure 3 models and phases of the PASSI methodology

VII. TROPOS METHODOLOGY

The Tropos methodology is considered to be one of the

important agent oriented methodologies. It was developed in

2003 by J. Castro, M. Kolp, and J. Mylopoulos.

The Tropos methodology is intended to support all analysis

and design activities in the software development process, from

application domain analysis down to the system implementation.

It takes into account both inter-agent and intra-agent issues. In

particular, Tropos rests on the idea of building a model of the

system-to-be and its environment that is incrementally refined

and extended. Tropos methodology provides a common interface

to various software development activities, as well as a basis for

documentation and evolution of the software. Tropos

differentiates between an early and a late requirements phase,

and between architectural design and detailed design. Tropos

consists of the following three main phases: Requirement

analysis phase, Design phase and Implementation phase.

Figure 4 illustrates the models of Tropos methodology.

Early Requirement phase

Late Requirement phase

Requirement Analysis Phase

Architectural Design

Detailed Design

Design Phase

Implementation Phase

Figure 4 models and phases of the Tropos methodology

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 62-66

65 | P a g e

VIII. PROPOSED METHODOLOGY

Figure 5 MBA Model

Eliminates the shortcomings faced by most other existing

methodologies. The second step is that we demonstrate the

new proposed methodology through the use of a case study

representing a project clearance system. This case study refers

to the collection of detailed information about how the

proposed methodology works.

IX. MAB MODEL METHODOLOGY

We represent the proposed methodology MAB model. This

methodology is constructed in order to as a reliable systematic

approach that proves a milestone for software development

lifecycle .The proposed methodology covers the most

important characteristics of multi-agent systems.

The new methodology deals with the agent concept as a high

level abstraction capable of modeling the complex system. The

new methodology also include well known techniques for

requirement gathering for user agency communication and

links them to domain analysis and design models such as

UCMS,UML Use Case Diagrams, Activity diagrams , FIPA-

ACL, etc. Furthermore, it supports simplicity and ease of use

as well as traceability.

MAB model is composed of four main phases, a System

requirements phase, an analysis phase, a design phase and an

implementation phase. Figure illustrates the detail of MAB

methodology. The next few sections present a more detailed

discussion of each of the four phases.

SYSTEM SCENARIO MODEL: the model is designed with

the help of the use case map and use case diagrams to define

the scenario of the system .In this case study we have designed

the project clearance scenario. Where the system scenario is

discussed in detailed.

ROLE MODEL: this model defines the role of the agent

within the system. In the project clearance system the agents

are identified and their rolesdefined for e.g, The role of the

DFO within the system is to verify the details of the project

and then forward it to the Ministry or return it back to the User

agency for further details.

BELIEFS MODEL: here the agent’s beliefs are discussed,

i.e. the area or jurisdiction of the particular agent and their

specific belief in persuing that tasks. i.e. all the agents that are

playing an important role in the project clearance.Theymay be

the DFO, Local Bodies and many others who have their own

perspective of judging it.

AGENT MODEL: All the agents that pay an important role

in MAB architecture. Here the agents work is to judge the

proposals and forward them to the higher authorities for

decision after marking their remarks.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 62-66

66 | P a g e

X. CONCLUSIONS

In this article, we have described why we perceive agents

to be a significant technology for software engineering. We

have discussed in detail how the characteristics of certain

complex systems appear to indicate the appropriateness of an

agent-based solution: as with objects before them, agents

represent a natural abstraction mechanism with which to

decompose and organize complex systems. In addition, we

have summarized some of the key issues in the specification,

implementation, and verification of agent-based systems, and

drawn parallels with similar work from more mainstream

computer science. In particular, we have shown how many of

the formalisms and techniques developed for specifying,

implementing, and verifying agent systems are closely related

to those developed for what are known as reactive systems in

mainstream computing. Finally, we have described some of

the pitfalls of agent-based development. Software engineering

for agent systems is at an early stage of development, and yet

the widespread acceptance of the concept of an agent implies

that agents have a significant future is software engineering. If

the technology is to be a success, then its software engineering

aspects will need to be taken seriously. Probably the most

important outstanding issues for agent-based software

engineering are: (i) an understanding of the situations in which

agent solutions are appropriate; and (ii) principled but

informal development techniques for agent systems. While

some attention has been given to the latter (in the form of

analysis and design methodologies for agent systems, almost

no attention has been given to the former

REFERENCES

[1] A. van Lamsweerde, and E. Letier, “Handling Obstacles in

Goal-Oriented Requirements Engineering,” IEEE

Transactions on Software Engineering vol. 26(10), pp. 978-

1005, 2000.

[2] A. Cockburn, "Structuring Use Cases with Goals,” Journal of

Object-Oriented Programming, Sep-Oct, 1997 and Nov-Dec,

1997.

[3] 3.S. A. DeLoach and M. Wood, "Developing Multiagent

Systems with agentTool," in Y.Lesperance and C.

Castelfranchi, editors, Intelligent Agents VII - Proceedings of

the 7th

[4] International Workshop on Agent Theories, Architectures,

and Languages (ATAL'2000). Springer Lecture Notes in AI,

Springer Verlag, Berlin, 2001.

[5] P. K. Harmer, G. B. Lamont, G.B, "An Agent Architecture

for a Computer Virus Immune System," in Workshop on

Artificial Immune Systems at Genetic and Evolutionary

Computation Conference, Las Vegas, Nevada, July 2000.

[6] G. J. Holzmann, “The Model Checker Spin,” IEEE

Transactions On Software Engineering, vol. 23(5), pp. 279-

295, 1997.

[7] M. Wooldridge (1997) “Agent-based software engineering”

IEE Proc. on Software Engineering,144 (1) 26-37.

[8] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R.

Owens (1989) “Concurrent MetateM: A framework for

programming in temporal logic” REX Workshop on Stepwise

Refinement of Distributed Systems: Models, Formalisms,

Correctness (LNCS Volume 430), 94-129. Springer-Verlag

[9] J. R. Marden and A. Wierman, “Overcoming limitations of

game-theoretic distributed control,” in Proc. 47th IEEE Conf.

Decision Control, Dec. 2009, pp. 6466–6471.

