SPLIT BLOCK SUBDIVISION DOMINATION IN GRAPHS

M.H. Muddebihal ${ }^{1}$, P.Shekanna ${ }^{2}$, Shabbir Ahmed ${ }^{3}$
Department of Mathematics, Gulbarga University, Gulbaarga-585106.
${ }^{1}$ mhmuddebihal@yahoo.co.in, ${ }^{2}$ shaikshavali71@gmail.com, ${ }^{3}$ glbhyb09@rediffmail.com

Abstract

A dominating set $D \subseteq V[S B(G)]$ is a split dominating set in $[S B(G)]$. If the induced subgraph $\langle V[S B(G)]-D\rangle$ is disconnected in $[S B(G)]$. The split domination number of $[S B(G)]$ is denoted by $\gamma_{s s b}(G)$, is the minimum cardinality of a split dominating set in $[S B(G)]$. In this paper, some results on $Y_{s s b}(G)$ were obtained in terms of vertices, blocks, and other different parameters of G but not members of [SB(G)]. Further, we develop its relationship with other different domination parameters of G.

Key words: Block graph, Subdivision block graph, split domination number.

[I] INTRODUCTION

All graphs considered here are simple, finite, nontrivial, undirected and connected. As usual p, q and n denote the number of vertices, edges and blocks of a graph G respectively. In this paper, for any undefined term or notation can be found in F. Harary [3] and G .Chartrand and PingZhang [2]. The study of domination in graphs was begin by O.Ore [5] and C.Berge [1].

As usual, The minimum degree and maximum degree of a graph G are denoted by $\delta(G)$ and $\Delta(G)$ respectively. A vertex cover of a graph G is a set of vertices that covers all the edges of G_{*} The vertex covering number $\alpha_{0}(G)$ is a minimum cardinality of a vertex cover in $G_{\text {s }}$ The vertex independence number $\beta_{0}(G)$ is the maximum cardinality of an independent set of vertices. A edge cover of G is a set of edges that covers all the vertices. The edge covering number $\alpha_{1}(G)$ of G is minimum cardinality of a edge cover. The edge independence number $\beta_{1}(G)$ of a graph G is the minimum cardinality of an independent set of edges.

A set of vertices $D \subseteq V(G)$ is a dominating set. If every vertex in $V-D$ is adjacent to some vertex in D.The Domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set in G.

A dominating set D of a graph G is a split dominating set if the induced subgraph $\langle V-D\rangle$ is disconnected. The split domination number $\gamma_{s}(G)$ of a graph G is the minimum cardinality of a split dominating set .This concept was introduced by $K u l l i[4]$. A dominating set D of G is a cototal dominating set if the induced subgraph $\langle V-D\rangle$ has no
isolated vertices. The cototal domination number $\gamma_{\text {cot }}(G)$ of G is the minimum cardinality of a cototal dominating set. See [4]

The following figure illustrate the formation of $[S B(G)]$ of a graph G

The domination of split subdivision block graph is denoted by $\gamma_{s s b}(G)$. In this paper, some results on $\gamma_{s s b}(G)$ where obtained in terms of vertices, blocks and other parameters of G.

We need the following Theorems for our further results:

[II] MAIN RESULTS

Theorem A [4]: A split dominating set D of G is minimal for each vertex $v \in D_{z}$ one of the following condition holds.
i) There exists a vertex $u \in V-D$, such that $N(u) \cap D=\{v\}$.
ii) v is an isolated vertex in $\langle D\rangle$.
iii) $((V-D) \cup\{v\})$ is connected.

Theorem B [4]: For any graph,$\gamma_{s}(G) \leq \frac{p \cdot \Delta(G)}{1+\Delta(G)}$.
Now we consider the upper bound on $\gamma_{s s b}(G)$ in terms of blocks in G.

Theorem 2.1: For any graph G with $n-$ blocks and $n \geq 2$, then $\gamma_{s s b}(G) \leq n-1$.

Proof: For any graph G with $n=1$ block, a split domination does not exists. Hence we required $n \geq 2$ blocks. Let $S=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots \ldots B_{n}\right\}$ be the number of blocks of G and $M=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots \ldots b_{n}\right\}$ be the vertices in $B(G)$ with corresponding to the blocks of S. Also $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\}$ be the set of vertices in $[S B(G)]$. Let $V_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{i}\right\}$,
$1 \leq i \leq n, V_{1} \subset V$ be a set of cut vertices. Again consider a subset V_{1}^{1} of V such that $\forall v_{i} \in N(V) \cap N\left(V_{1}^{1}\right)$ and $V_{1}=V-V_{1}^{1}$. Let $V_{2}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{s}\right\}, 1 \leq s \leq n, \forall v_{s} \in V$ which are not cut vertices such that $N\left(V_{1}\right) \cap N\left(V_{2}\right)=\emptyset$, then $\left\{V_{1} \cup V_{2}\right\}$ is a dominating set .Clearly $V\left[S B(G)-\left\{V_{1} \cup V_{2}\right\}=H\right.$ is disconnected graph. Then $\quad\left(V_{1} \cup V_{2}\right)$ is a $\quad Y_{s s b}-$ set of G. Hence $\left|V_{1} \cup V_{2}\right|=\gamma_{s s b}(G)$ which gives $\gamma_{s s b}(G) \leq n-1$.

In the following Theorem, we obtain an upper bound for $Y_{s s b}(G)$ in terms of vertices added to $B(G)$.

Theorem 2.2: For any connected (p, q) graph with $n \geq 2$ blocks, then $\gamma_{s s b}(G) \leq R$ where R is the number of vertices added to $B(G)$.

Proof: For any nontrivial connected graph G. If the graph G has $n=1$ block.Then by the definition, split domination set does not exists. Hence $n \geq 2$ blocks.Let $S=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots \ldots B_{n}\right\}$ be the blocks of G and $M=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots, b_{n}\right\}$ be the vertices in $B(G)$ which corresponds to the blocks of S.Now we consider the following cases.

Case1: Suppose each block of $B(G)$ is an edge. Then $R=q=E[B(G)]$. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\}$ be the set of vertices of $[S B(G)]$. Now consider $V_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{i}\right\}, 1 \leq i \leq n$ is a set of cut vertices in $[S B(G)]$.

Let $V_{2} \subseteq V_{1}, \forall v_{j} \in V_{2}$ are adjacent to end vertices of $[S B(G)]$. Again there exists a subset V_{3} of V_{1} with the property $V[S B(G)]-\left\{V_{2} \cup V_{3}\right\}=H$ where $\forall v_{n} \in H$ is adjacent to atleast one vertex of $\left(V_{2} \cup V_{3}\right)$ and H is a disconnected graph. Hence $V_{2} \cup V_{3}$ is a $Y_{s s b}$ set of $G . \quad$ By Theorem 1,

$$
\left|V_{2} \cup V_{3}\right| \leq R
$$

Case2: Suppose each block of $B(G)$ is a complete graph with $p \geq 3$ vertices. Again we consider the sub cases of case 2.

Subcase2.1: Assume $B(G)=K_{p}, \quad p \geq 3$. Then $V[S B(G)]=V[B(G)]+q[B(G)] \quad$ and $V[S B(G)]-V[B(G)]=q[B(G)]$ where $\forall v_{i} \in q[B(G)]$ is an isolates. Hence $|q[B(G)]| \geq|V[B(G)]|$ which gives $Y_{s s b}(G) \leq R$.

Sub case 2.2: Assume every block of $B(G)$ is $K_{p} p \geq 3$. .
Let $B(G)=\left\{K_{p_{1},} K_{p_{2}}, K_{p_{s}}, \ldots \ldots \ldots K_{p_{m}}\right\} \quad$ then $V\left\{S\left[B_{1}(G) \cup B_{2}(G) \cup B_{3}(G) \ldots \ldots \cup B_{m}(G)\right]\right\}=V\left[B_{1}, B_{2}, B_{3}, \ldots \ldots, \ldots, B_{m}\right]+q_{1}[B(G)] \cup q_{2}[B(G)] \cup$ $q_{3}[B(G)] \ldots \ldots \ldots q_{m}[B(G)]$
and $V\left\{S\left[B_{1}(G) \cup B_{2}(G) \cup B_{3}(G) \ldots \ldots \ldots B_{m}(G)\right]\right\}-$
$V\left[B_{1}, B_{2}, B_{3}, \ldots \ldots . B_{m}\right]=$
$q_{1}[B(G)] \cup q_{2}[B(G)] \cup q_{3}[B(G)] \ldots \ldots \ldots \cup q_{m}[B(G)]$.
where
$v_{i} \in q_{1}[B(G)] \cup q_{2}[B(G)] \cup q_{3}[B(G)] \ldots \ldots \ldots \cup q_{m}[B(G)]$ is an isolate. Hence $\left|q_{1}[B(G)] \cup q_{2}[B(G)] \cup q_{3}[B(G)] \ldots \ldots \cup q_{m}[B(G)]\right| \geq\left|V\left[B_{1}, B_{2}, B_{3}, \ldots \ldots . B_{m}\right]\right|$ which gives $\gamma_{s s b}(G) \leq R$.

We establish an upper bound involving the Maximum degree $\Delta(G)$ and the vertices of G for split block sub division domination in graphs.

Theorem 2.3: For any graph Gwith $n \geq 2$ blocks, then $\gamma_{s s b}(G) \leq\left|\frac{p \Delta(G)}{1+\Delta(G)}\right|$.

Proof: For split domination, We consider the graphs with the property $n \geq 2$ blocks. Let $S=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots \ldots B_{n}\right\}$ be the blocks of G and $M=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots \ldots b_{n}\right\}$ be the vertices in $B(G)$ corresponding to the blocks of S. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{n}\right\}$ be the vertices in $[S B(G)]$. Let D be a $Y_{s}-\operatorname{set}$ of $[S B(G)]$. By Theorem A, each vertex $v \in D_{\text {s there exist a vertex }} u \in V[S B(G)]-D$ is a split dominating set in $[S B(G)]$.Thus $\gamma(G) \leq|V[S B(G)]-D|, \gamma(G) \leq P-\gamma_{s s b}(G)$. Since by Theorem $\quad B, \gamma_{s}(G) \leq \frac{p \cdot \Delta(G)}{1+\Delta(G)} \quad$ which gives $Y_{s s b}(G) \leq\left\lfloor\frac{p \Delta(G)}{1+\Delta(G)}\right\rfloor$.

The following lower bound relationship is between split domination in $[S B(G)]$ and vertex covering number in $B(G)$.

Theorem 2.4: For any graph G with $n \geq 2$ blocks ,then $\gamma_{s s b}(G) \geq \alpha_{0}[B(G)]$, where α_{0} is a vertex covering number of $B(G)$.

Proof: We consider only those graphs which are not $n=1$. Let $S=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots \ldots B_{n}\right\}$ be the blocks of G which correspondes to the set $M=\left\{b_{1}, b_{2}, b_{3, \ldots \ldots \ldots \ldots}, b_{n}\right\}$ be the vertices in $\mathrm{B}(\mathrm{G})$. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\}$ be the vertices in $[S B(G)]$ such that $M \subset V$. Again $D=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{i}\right\}, 1 \leq i \leq n, D \subset V$ such that $N\left(v_{i}\right) \cap N\left(v_{j}\right)=v_{k} \quad, v_{i}, v_{j}, \in D \quad$ and $v_{k} \in V[S B(G)]-D$ and $N\left(v_{i}\right) \cap N\left(v_{j}\right)=\emptyset, \forall v_{i}, v_{j}, \in D$

Hence $\langle V[S B(G)]-D\rangle \quad$ is disconnected, which gives $\mid V\left[S B(G)-D \mid=Y_{s s b}(G)\right.$. Now $M_{1}=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots \ldots b_{i}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{M}_{1} \subset \mathrm{M}$ and each edge in $B(G)$ is adjacent to atleast one vertex in M_{1}. Clearly $\left|M_{1}\right|=\alpha_{0}[B(G)]$. Hence $|V[S B(G)]-D| \geq\left|M_{1}\right|$ which gives $\gamma_{s s b}(G) \geq \alpha_{0}[B(G)]$.

The following result gives a upper bound for $Y_{s s b}(G)$ in terms of domination and end blocks in G.

Theorem 2.5: For any connected graph G with $n \geq 2$ blocks and N - end blocks, then
$\gamma_{s s b}(G) \leq \gamma(G)+N$.
Proof: Suppose graph G is a block. Then by definition, the split domination does not exists. Now assume G is a graph with at least two blocks. Let $S=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots \ldots B_{n}\right\}$ be the set of blocks in G and $M=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots \ldots b_{n}\right\}$ be the vertices in $B(G)$ which corresponds to the blocks of G. Now $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{n}\right\}$ be the vertices in $[S B(G)]$. Suppose D is a $\gamma_{s}-\operatorname{set} i n[S B(G)]$ of G, whose vertex set is $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{i}\right\}$. Note that at least one $v_{i} \in S$. More over, any component of $V-S$ is of size atleast two. Thus D is minimal which gives $|D|=\gamma_{s s b}(G)$. Again $\quad S_{1}=\left\{u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots . u_{n}\right\}$ be the vertices in G and $D_{1}=\left\{u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots . u_{i}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}_{2}, \mathrm{D}_{1} \subset \mathrm{~S}_{1}$. Every vertex of $S_{1}-D_{1}$ is adjacent to at least one vertex of D_{1}. Suppose there exists a vertex $v \in D_{1}$ such that every vertex of $D_{1}-V_{1}$ is not adjacent to at least one vertex $u \in\left[S_{1}-\left\{D_{1}-v\right\}\right]$. Thus $\left|S_{1}-D_{1}\right|=\gamma(G)$. Hence

A relationship between the split domination in $[S B(G)]$ and independence number of a graph G is established in the following theorem.

Theorem2.6: For any connected graph G with $n \geq 2$ blocks then $\quad \gamma_{s s b}(G) \geq \beta_{0}(G)-1$, where $\beta_{0}(G)$ is the independence number of G.

Proof: By the definition of split domination, $n \neq 1$. Let $S=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots \ldots B_{n}\right\}$ be the blocks of G which corresponds to the vertices of the set $M=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots \ldots b_{n}\right\}$ in $B(G) . \quad$ Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\} \quad$ be the vertices in $[S B(G)]$ such that $M \subset V$.Let $H=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{s}\right\}$ be the set of vertices in $G . W_{\mathrm{e}}$ have the following cases.

Case1: Suppose $B(G)$ is a tree. Let $V_{1}^{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{s}\right\} \quad$ are cut vertices in $[S B(G)]$. Again $V_{1}^{11}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{t}\right\}, 1 \leq t \leq s$ and $V_{1}^{11} \subset V_{1}^{1}$,were $\forall v_{t} \in V_{1}^{11}$. Then we consider $V_{2}^{1}, V_{3}^{1}, V_{4}^{1}$
where $V_{1}^{11}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{t}\right\}=V_{2}^{1} \cup V_{3}^{1} \cup V_{4}^{1}$ with the property that $N\left(v_{i}\right) \cap N\left(v_{j}\right)=\emptyset, \forall v_{i} \in V_{2}^{1}$ and $\forall v_{j} \in V_{3}^{1}$ and $V_{4}^{1} \quad$ is a set of all end vertices $\operatorname{in}[S B(G)]$. Again $\langle V[S B(G)]\rangle=J$ where every $v \in J$ is an isolates.Thus $\left|V_{1}^{11}\right|=\gamma_{s s b}(G)$.

Case 2: Suppose $B(G)$ is not a tree. Again we consider sub cases of case 2

Subcases2.1: Assume $B(G)$ is a block. Then in $[S B(G)], V[S B(G)]=V[B(G)]+\{K\}$, where $\forall k$,
$\operatorname{deg} k=2$. Thus $|K|=P_{0}$ the number of isolates in $V[S B(G)]-V[B(G)]$. Hence $|V[B(G)]|=\gamma_{s s b}(G)$. One can see that for the $\beta_{0}-$ set as in case1, We have $|V[B(G)]| \geq \beta_{0}-1$ which gives $\gamma_{s s b}(G) \geq \beta_{0}(G)-1$.

Sub case 2.2: Assume $B(G)$ has atleast two blocks.Then as in subcase 2.1, we have $\gamma_{s s b}(G) \geq \beta_{0}(G)-1$.

The next result gives a lower bound on $Y_{s s b}(G)$ in terms of the diameter of G.

Theorem 2.7: For any graph G with $n \geq 2$ blocks ,then $\gamma_{s s b}(G) \geq \operatorname{diameter}(G)-2$.
www.ijtra.com Volume 2, Issue 5 (Sep-Oct 2014), PP. 82-86
Proof : Suppose $S=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots \ldots B_{n}\right\}$ be the blocks of G,Then $M=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots \ldots b_{n}\right\}$ be the corresponding block vertices in $B(G)$. Suppose $A=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots e_{k}\right\}$ be the set of edges which constitutes the diameteral path in G.Let $S_{1}=\left\{B_{i}\right\}$ where $1 \leq i \leq n, S_{1} \subset S$. Suppose $\forall B_{i} \in S_{1}$ are non end blocks in G, which gives cut vertices in $B(G)$ and $[S B(G)]$. Suppose $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{n}\right\} \quad$ be the vertices in $[S B(G)]$. Again $V_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{i}\right\} \quad$ where $1 \leq i \leq n$ such that $V_{1} \subset V$ then $\forall v_{i} \in V_{1}$ are cut vertices in $[S B(G)]$. Since they are non end blocks in $[S B(G)]$. Then V_{1} is a $\gamma_{s}-\operatorname{set}$ of $[S B(G)]$. Clearly $\left|V_{1}\right|=Y_{s s b}(G)$.

Suppose G is cyclic then there exists atleast one block B which contains a block diametrical path of length atleast two. In $B(G)$ the block $B \in V[B(G)]$ as a singleton and if atmost two elements of $\{A\} \notin$ diameter of G then $|A|-2 \leq\left|V_{1}\right| \quad \operatorname{gives} \gamma_{s s b}(G) \geq \operatorname{diameter}(G)-2$. Suppose G is acyclic then each edge of G is a block of G. Now $\forall B_{i} \in S, \exists e_{i}, e_{j} \notin\{A\}$, where $1 \leq\{i, j\} \leq k$ gives diameter $(G)-2 \leq\left|V_{1}\right|$. Clearly we have $\gamma_{s s b}(G) \geq$ diameter $(G)-2$.

The following result is a relationship between $\gamma_{s s b}(G)$, domination and vertices of G.

Theorem 2.8: For any graph G with $n \geq 2$ blocks then $\gamma_{\text {ssb }}(G)+\gamma(G) \leq P+1$.

Proof: Suppose the graph G has one block, then split domination does not exists. Hence $n \geq 2$ blocks.

Suppose $S=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots \ldots B_{n}\right\}$ be the blocks of G.Then $\quad M=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots \ldots b_{n}\right\}$ be the corresponding block vertices in $B(G)$. Let $H=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\}$ be the set of vertices in G. Also
$I=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{i}\right\}$ where $1 \leq \mathrm{i} \leq \mathrm{n}$ such that $\mathrm{J} \subset \mathrm{H}$ and $\forall v_{i} \in H-J$ is adjacent to atleast one vertex of I. Hence $\| J=\gamma(G)$. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{s}\right\}$ be the set of vertices in $[S B(G)]$. Now $S_{1}=\left\{B_{i}\right\}$ where $1 \leq i \leq n, S_{1} \subset S$ and $\forall B_{i} \in S_{1}$ are non end blocks in G. Then we have $V_{1} \subset V$ which corresponds to the elements of $S\left[S_{1}\right]$ such that V_{1} forms a minimal dominating set of $[S B(G)]$. Since each element of V_{1} is a cut vertex, then
$\left|V_{1}\right|=Y_{s s b}(G) . \quad$ Further $\quad V_{1} \cup J \leq P+1 \quad$ which gives $\gamma_{s s b}(G)+\gamma(G) \leq P+1$.

Next, the following upper bound for split domination in $[S B(G)]$ is interms of edge covering number of G.

Theorem2.9: For any connected (p, q) graph with $n \geq 2$ blocks, then $\gamma_{s s b}(G) \leq \alpha_{1}(G)+1$ where $\alpha_{1}(G)$ is the edge covering number.

Proof: For any non trivial connected graph G with $n=1$ block, then by definition of split domination, the split domination set does not exists. Hence $n \geq 2$ blocks.

Let $S=\left\{B_{1}, B_{2}, B_{3}, \ldots \ldots \ldots \ldots B_{n}\right\}$ be the blocks of G which correspondes to the set $M=\left\{b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots \ldots b_{n}\right\}$ be the vertices in $B(G)$. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\}$ be the vertices in $[S B(G)]$ such that $M \subset V$. We have the following cases.

Case 1: Suppose each block is an edge in G.Then $E(G)=\left|E_{1}(G) \cup E_{2}(G)\right|$ where $E_{1}(G)$ is the set of end edges, If every cut vertex of G is adjacent with an end vertex. Then $\exists E_{1}(G)$ and $E_{2}(G)$. If $E_{2}(G)=\emptyset$. Then $\left|E_{1}(G)\right|=\alpha_{1}(G)$.Otherwise $\left|E_{1}(G) \cup E_{2}(G)\right|=\alpha_{1}(G)$.

Let $D_{1}=\left\{v_{s}\right\}, 1 \leq s \leq n$ and $D_{1} \subset V_{s}$ then there exist atleast one cut vertices in $[S B(G)]$. Let $D_{2}=\left\{v_{t}\right\}$ $1 \leq t \leq n, D_{2} \subset V$ which are non cut vertices in $[S B(G)]$. Again $D_{2}^{1}=\left\{v_{l}\right\}, 1 \leq l \leq t \quad$ and $\quad D_{2}^{1} \subset D_{2}$. The $N\left(D_{2}^{1}\right) \cap N\left(v_{s}\right)=\emptyset$ then $\left(D_{2}^{1} \cup D_{1}\right)$ is a split dominating set. Hence $\quad\left\langle V[S B(G)]-\left(D_{2}^{1} \cup D_{1}\right)\right\rangle=Y_{s s b}(G)$. Since $\left\langle V[S B(G)]-\left(D_{2}^{1} \cup D_{1}\right)\right\rangle$ has more than one component. Hence $\left|V[S B(G)]-\left(D_{2}^{1} \cup D_{1}\right)\right| \leq \alpha_{1}(G)+1$ which gives $Y_{s s b}(G) \leq \alpha_{1}(G)+1$.

Case2: Suppose G has atleast one block which is not an edge. Let $D_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots, v_{i}\right\}, 1 \leq i \leq n$ and $D_{1} \subset V$ be the set of cut vertices such that $N\left(v_{i}\right) \neq \varnothing$. Again $D_{2}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{l}\right\}, 1 \leq l \leq i$ be the set of cut vertices in $[S B(G)]$ such that $N\left(v_{i}\right) \cap N\left(v_{l}\right)=\emptyset$,$N\left(v_{i}\right) \cap N\left(v_{l}\right)=v_{k}$, where $v_{i}, v_{l}, \in D \quad$ and $v_{k} \in V[S B(G)]-D$. Hence $\langle V[S B(G)]-D\rangle$ is disconnected , which gives $|V[S B(G)]-D|=\gamma_{s s b}(G)$. As in case 1 , $\alpha_{1}(G)$ will increase. Hence $|V[S B(G)]-D| \leq \alpha_{1}(G)+1$ which gives $\alpha_{1}(G)+1 \geq \gamma_{s s b}(G)$.

The following lower bound for split domination in $[S B(G)]$ is interms of edge independence number in $B(G)$.

Theorem 2.10: For any graph G with $n \geq 2$ blocks then $\gamma_{s s b}(G) \geq \beta_{1}[B(G)]$.

Proof: By the definition of Split domination, we need $n \geq 2$ blocks. We have the following cases.

Case 1: Suppose each block in $B(G)$ is an edge. Let $E=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots . e_{n}\right\}$ be the set of edges in $B(G)$. Also $E_{1}=\left\{e_{s}\right\}, 1 \leq s \leq n$ be a set of alternative edges in $B(G)$. Then $\left|E_{1}\right|=\beta_{1}[B(G)]$.

Consider $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\}$ be the vertices in $[S B(G)]$, again $V_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{i}\right\}$ be the cut vertices which are adjacent to at least one vertex of E_{1} and $V_{2}=\left\{v_{s}\right\}$ are the end vertices in $[S B(G)]$. Further $\left\langle V[S B(G)]-\left(V_{1} \cup V_{2}\right)\right\rangle$ is disconnected. Then $\left|V_{1} \cup V_{2}\right|$ is $a \gamma_{s s b}-$ set.

Hence $\left|V_{1} \cup V_{2}\right| \geq\left|E_{1}\right|$ which gives $\gamma_{s s b}(G) \geq \beta_{1}[B(G)]$.
Case2: Suppose there exists at least one block which is not an edge. Let $E=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots . e_{n}\right\}$ be the set of edges in $B(G)$. Again $E_{1}=\left\{e_{s}\right\}, 1 \leq s \leq n$ is the set of alternative edges in $B(G)$ which gives $\left|E_{1}\right|=\beta_{1}[B(G)]$.

Suppose $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\}$ be the vertices of $[S B(G)]$. Then $V=V_{1} \cup V_{2}$ where V_{1} is a set of cut vertices and V_{2} is a set of non cut vertices. Now we consider $V_{1}^{1} \subset V_{1}$ and $V_{2}^{1} \subset V_{2}$ such that $\left\langle V[S B(G)]-\left(V_{1}^{1} \cup V_{2}^{1}\right)\right\rangle$ has more than one component. Hence $\quad\left\{V_{1}^{1} \cup V_{2}^{1}\right\}$ is a $Y_{s s b}-\operatorname{set}$ and $\left|V_{1}^{1} \cup V_{2}^{1}\right| \geq \beta_{1}[B(G)]$ which gives $Y_{s s b}(G) \geq \beta_{1}[B(G)]$.

In the following theorem, we expressed the lower bound for $Y_{s s b}(G)$ in terms of cut vertices of $B(G)$.

Theorem 2.11: For any connected graph G with $n \geq 2$ blocks then $\gamma_{s s b}(G) \geq C[B(G)]$ where C is the cut vertices in $B(G)$.

Proof: Suppose graph G is a block. Then by the definition, of split domination, $n \geq 2$. consider the following cases.

Case 1: Suppose each block of $B(G)$ is an edge. Then we consider $S=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{m}\right\}$ be the cut vertices in $B(G)$. Now $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\}$ be the vertices in
$[S B(G)]$ and $V_{1}=\left\{v_{i}\right\} 1 \leq i \leq n$ are cut vertices in $[S B(G)] \cdot A g \operatorname{ain} V_{2} \subset V_{1}$ is adjacent to at least one vertex in S. Then $V[S B(G)]-V_{2}$ gives disconnected graph. Thus $\left|V_{2}\right|=Y_{s s b}(G)$. Hence $\left|V_{2}\right| \geq C[B(G)]$ gives $\gamma_{s s b}(G) \geq C[B(G)]$.

Case 2: Suppose each block in $B(G)$ is not an edge. Let $S_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{s}\right\}$ be the cut vertices in $[S B(G)]$. Then $S_{1} \cong S$.

Again $S_{2}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{l}\right\}$ are the non cut vertices in $[S B(G)]$. Further we consider $S_{2}^{1} \subset S_{2}$ such that $V[S B(G)]-\left\{S_{2}^{1}\right\} \cup\{S\}=H$ where $\langle H\rangle$ is disconnected. Clearly $\left|S_{2}^{1} \cup S_{1}\right| \geq|S|$ which gives $Y_{s s b}(G) \geq C[B(G)]$.

Finally, the following result gives an lower bound on $\gamma_{s s b}(G)$ in terms of $\gamma_{\text {cot }}(G)$.

Theorem 2.12: For any nontrivial tree with $n \geq 2$ blocks, $\gamma_{s s b}(G) \geq \gamma_{\text {cot }}(G)-1$.

Proof: We consider only those graphs which are not $n=1$ Let $\mathrm{H} \quad=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{p}\right\}$, $H_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{i}\right\}, 1 \leq i \leq p$ be a subset of $V(G)=H$ which are end vertices in G. Let $I=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{j}\right\} \subseteq V(G) \quad$ with $\quad 1 \leq j \leq p$ such that $\forall v_{j} \in J, \quad N\left(v_{i}\right) \cap N\left(v_{j}\right)=\emptyset \quad$ and $\left\langle V(G)-\left(H_{1} \cup J\right)\right\rangle$ has no isolates, then $\left|H_{1} \cup J\right|=\gamma_{\text {cot }}(G)$. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{n}\right\}$ be the vertices in $[S B(G)]$. consider $D=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots . v_{t}\right\}=V_{1} \cup V_{2} \cup V_{3}$ be the set of all vertices of $[S B(G)]$. Where $\forall v_{s} \in V_{1}$ and $v_{t} \in V_{2}$ with the property $\left(v_{s}\right) \cap N\left(v_{t}\right)=\emptyset, \forall v_{l} \in V_{3}$ is a set of all end vertices in $[S B(G)]$. The $\langle D\rangle$ is an isolates. $|D|$ gives minimum split domination in $[S B(G)]$.

Thus $|D|=Y_{s s b}(G)$. Clearly $\left|H_{1} \cup J\right|-1 \leq \| D \mid$ which gives $\gamma_{s s b}(G) \geq \gamma_{\text {cot }}(G)-1$.

REFERENCES

[I] C Berge, Theory of graphs and its applications, Methuen, London, (1962).
[II] G. Chartrand and Ping Zhang, "Introduction to graph Theory", Newyork (2006).
[III] F.Harary, Graph Theory, Adison Wesley, Reading Mass (1972).
[IV] V.R.Kulli, Theory of domination in Graphs, Vishwa international Publications, Gulbarga, India. (2010).
[V] O.Ore, Theory of graphs, Amer. Math. soc., Colloq. Publ., 38 Providence, (1962).

