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Abstract— Defect in software systems continue to be a 

major problem. High quality of software is ensured by 

Software reliability and Software quality assurance. A 

software defect causes software failure in an executable 

product.  A variety of software fault predictions 

techniques have been proposed, but none has proven to be 

consistently accurate. The objective in the construction of 

models of software error prediction is to use measures that 

may be obtained relatively early in the software 

development life cycle to provide reasonable initial 

estimates of quality of an evolving software system. Here 

various data mining classification and prediction 

techniques viz. Neural Network (NN), Naïve Bayes, k-

Nearest Neighbour (kNN)  have been analysed and 

compared for software defect prediction model 

development. For this DATATRIEVETM project carried 

out at Digital Engineering, Italy has been used to validate 

the algorithm. The results showed that model using NN 

classification technique was a better prediction model. 

Keywords— Software Defect, NN, kNN, Naive Bayes, 

Classification techniques, Data Mining. 

I. INTRODUCTION  

Faults in software systems continue to be a major problem 

[1]. They are present in a computer program as errors, flaws, 

defects, failures, or faults. This hinders the software from 

working in the desired manner. (e.g., a faulty result being 

produced) [2]. A software fault is a defect that causes software 

failure in an executable product. Number of defects in a 

module of a software can be effectively identified using   

Software metrics-based quality prediction models as a tool. 

The use of such models before every planned release of the 

product, or deployment of that may considerably improve 

system quality [3]. A defective prediction model is identified 

using metrics from an earlier deployment or identical projects, 

and is then implementd in modules presently under 

development. Afterwards, a timely prediction of that modules 

needs lots of effort to get rid of the defects and then it can be 

secured. Over the past decades years, several empirical studies 

have been carried out to predict the fault proneness models. 

Software fault prediction study can be grouped as statistical 

and machine learning (ML) technique, of which the machine 

learning technique is the most popular [4]. Unluckily, the 

seriousness of software fault prediction have not resolved 

methodically. And none of the techniques have achieved 

widespread applicability in the software industry due to several 

reasons, including the limitation of testing resource, absence of 

software tools to mechanize this software fault prediction, the 

unwillingness to collect the software defect data, lots of 

method based on the private software data, and the other 

practical problems.  

Machine learning classification algorithm is an accepted 

technique for software fault prediction [6]. Classification 

forecasting has two levels: classifier construction and the usage 

of the classifier constructed. The former is concerned with the 

building of a classification model. Here it deals with  a set of 

preset classes using training dataset. Here in the training data, 

all the samples are thought of as belonging to a preset class. 

This is determined by the class attribute label. The model so 

developed is designated as a classification rules, decision tree 

or mathematical formula.  

In the current work, a relative analysis of a variety of 

classification techniques has been proposed for getting better 

performance of software defect prediction. It is seen that 

particle swarm optimization is useful for feature selection, and 

bagging one for class imbalance problem. Bagging technique is 

useful in managing class imbalance. The current work is 

carried out using public datasets from DATATRIEVETM 

project carried out at Digital Engineering, Italy. 

A. Literature Review 

Various techniques, such as linear regression, discriminate 

analysis, decision trees, neural networks etc. have been 

developed and applied to predict defects in software. Ahmet 

Okutan, et.al.(2012), proposed a novel method using Bayesian 

networks to explore the relationships among software metrics 

and defect proneness. Mrinal Singh Rawat et. al.(2012), 

identified causative factors which in turn suggest the remedies 

to improve software quality and productivity. Yajnaseni Dash, 

Sanjay Kumar Dubey, (2012) aimed to survey various research 

methodologies proposed to predict quality of OO metrics by 

using neural network approach. Ms. Puneet Jai Kaur, Ms. 

Pallavi, (2013) discussed data mining techniques that are 

association mining, classification and clustering for software 

defect prediction. Sonali Agarwal and Divya Tomar, (2014), 

proposed a feature selection based Linear Twin Support Vector 

Machine (LSTSVM) model to predict defect prone software 

modules. Mrs.Agasta Adline, Ramachandran. M(2014) 

Predicting the fault-proneness of program modules when the 

fault labels for modules are unavailable is a challenging task 

frequently raised in the software industry. Pooja Paramshetti , 

D. A. Phalk, (2015), applied association rule discovery for 

detecting software entities that are likely to be defective in 
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software systems. H. S. Shukla, Deepak Kumar Verma (2015), 

analysed various literatures on defect prediction and drew 

various conclusions. 

B. Data Used 

In the present paper various data mining classification 

algorithms will be applied for the development of an efficient 

predictive model. For this DATATRIEVETM project carried 

out at Digital Engineering, Italy has been used to validate the 

algorithm [8]. It has 130 records, which includes total nine 

attributes, of which eight are condition attributes and one is 

decision attribute. They are taken from open source PROMISE 

Software Engineering Repository data set with the intention of 

making available these datasets for the advancement of 

research in the field of software engineering using different 

model development techniques. This one includes a linguistic 

attribute (DEFECTS) to indicate defectiveness. It is given in 

0/1, which indicates no faults / faults found. Hence for the 

development of the classification models these values has been 

converted into NO/YES as label  attributes. The descriptions of 

the features are taken from 

http://promise.site.uottawa.ca/SERepository/datasets/datatrieve

.arff [5]. 

Table 1 Input and Output model parameters used for model 

development. 

II. PROBLEM STATEMENT AND PROPOSED TECHNIQUE 

This section presents the proposed technique to analyze 

software defect data. The proposed approach uses permutation 

combination of  various classification techniques, viz. Neural 

Network (NN), Decision tree (DT), Support Vector Machine 

(SVM), K-Nearest Neighbour (k-NN). Further stacking, a meta 

modeling techniques in order to enhance the accuracy of the 

classification techniques have also been used in the model. In 

the first stage a pre-processing model is proposed to optimize 

the dataset. In the second stage experiments are performed 

using the machine learning classification methods to obtain the 

performance vector for various software fault prediction 

models. The proposed framework is depicted in figure 1. 

 

 
 

Figure 1: Experimental Framework for Data Analysis  

III. MODEL DEVELOPMENT STAGES 

In the present work two software error prediction models 

have been developed using Rapid Miner tool. The details of the 

two models using different algorithms are tabulated below. 

Table 2: Algorithms used for MODEL-I and MODEL-II 
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k-NN= k Nearest Neighbourhood,  NN=Neural Network,  

The flowchart used in Rapid Miner for carrying out 

software error prediction model development are given in  

Figures 2 and 3 below, 

Input Variable @attribute LOC6_0 numeric 

@attribute LOC6_1 numeric 

@attribute Added_LoC numeric 

@attribute Del_LoC numeric 

@attribute Diff_Block numeric 

@attribute Mod_Rate numeric 

@attribute Mod_Know numeric 

@attribute ReusedLoC numeric 

Output Variable @attribute Faulty6_1 {0, 1} 
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Fig 2 : Screen Shot of Main Process of MODEL-I 

 
Fig 3 : Screen Shot of Main Process of MODEL-II 

 

The various stages include data retrieve, normalization of 

data, data validation, which includes training and testing sub-

process. In Model-I training is done using NN classifier, where 

as in Model-II training includes stacking meta-learner. The 

Stacking operator is a nested operator, having two sub-

processes, the base learner and the Stacking model learner. The 

base learner uses kNN and NN whereas stacking model learner 

uses Naive Bayes. Next, testing incorporates Apply model and 

Performance Evaluation. The Apply Model operator applies 

the already learnt (trained) model on an ExampleSet. The 

Performance operator is used for performance evaluation, and 

delivers a list of performance criteria values. These 

performance criteria are automatically determined in order to 

fit the learning task type.  

Table 3 : Parameter Used for Model Development 

Sl. No. Operator   Parameter Used Type 

  MODEL - I       

1 

Normalize a Min. val. 0 

 Using range transformation b Max. Val. 1 

2 Validation a no. of validations 10 

    b sampling type Automatic 

3 Neural Net a criterion Training cycle – 500 

        Learning rate – 0.5 

        Momentum – 0.9 

          

4 Performance a Accuracy   

    b Precision   

    c Recall   

    d RMSE   

    e Absolute error   

          

  MODEL - II       

          

1 Validation a no. of validations 10 

    b sampling type Automatic 

2 k-NN a k 1 

    b Measure Type Mixed Measure using Euclidean distance 

3 Neural Net a criterion Training cycle – 500 

        Learning rate – 0.3 

        Momentum – 0.2 

4 Naïve Bayes a Laplace Correction   
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IV. RESULTS AND DISCUSSIONS: 

The dataset consists of one includes a linguistic attribute 

(DEFECTS) to indicate defectiveness. It is given in 0/1, which 

indicates no faults / faults found. Hence for the development of 

the classification models these values has been converted into 

NO/YES as label  attributes.  

If an attribute is labeled as yes and is classified as yes it is 

counted as true positive else if it is classified as no it is counted 

false negative. Similarly, if a label is labeled no and is 

classified as no it is counted as true no else if it is classified as 

yes it is counted as false no. Based on these outcomes a two by 

two confusion matrix can be drawn for a given test set. This is 

shown in Figure 4.8 and 4.9  below for both the models I and 

II.  

The confusion matrix in figure 4 below forms the basis for the 

calculation of the following metrics.  

i. Accuracy = (tp+tn)/ (P+N)  

ii. Precision = tp/ (tp+fp)  

iii. Recall/ true positive rate = tp/P  

iv. F-measure =2/ ((1/precision)+(1/recall))  

     

Fig. 4 : Confusion Matrix for MODEL- I &II 

The accuracy of the models I and II are 91.54 and 87.69 

and their graphical representation are shown in Fig. 5 below. 

 

 
 

Fig. 5: Graphical Representation of Model Accuracy 

Further below is given the tabulation of Absolute error, 

RMSE, Recall, Precision and f-measure of both the ModelsI 

and II.  

Table 4: Error Values of Model – I & II 

 

Model No. Abs. Error RMSE 

I 0.124 0.276 

II 0.126 0.338 

 

 

 

Fig. 6 : Comparative Plot of AE and RMSE OF MODEL-I 

and MODEL-II 

Table – 5 

Model No. Precision Recall f-Measure 

I 50 15 26.67 

II 22.22 15 20 

 

 
Fig. 7 : Comparative Plot of MODEL-I and MODEL-II 

 

From the above analytical study of Table 4 and 5 and their 

respective graphs in Fig. 5, 6 and 7  as regards the performance 

analysis of both the MODEL –I and MODEL-II, it can be seen 

that MODEL-I has a prediction accuracy of 91.54% a 

compared to that of MODEL-II with 87.69% accuracy. The 

RMSE and AE values are also better for MODEL-I as 

compared to MODEL-II.  Although Recall for both the models 

are almost same, but Precision and f-measure for MODEL-I is 

better than MODEL-II. Thus MODEL-I using Neural Network 

training algorithm has been able to develop a better model as 

compared to MODEL-II using Stacking as training algorithm. 

 

Conclusion 

Software developers and quality control managers must 

come out with a variety of combinations like persons, tools, 

development techniques, etc. so as to be able to develop quality 

products and be able to deliver it on time, that too within 

budgetary cost. Thus in order to tackle the above entioned 

issues. An attempt has been made in the present work for 

software error prediction. Here various data mining 

classification and prediction techniques viz. Neural Network 

(NN), Naïve Bayes, k-Nearest Neighbour (kNN)  have been 

analysed and compared for software defect prediction model 

development. For this DATATRIEVETM project carried out at 

Digital Engineering, Italy has been used to validate the 

algorithm. It has 130 records, which includes total nine 

attributes, of which eight are condition attributes and one is 

decision attribute.  

Two model MODEL-I and MODEL-II were developed and 

compared. MODEL-I was developed using NN training 

algorithm and was found to be a better prediction model as 

compared to MODEL-II which used stacking as training 

algorithm. MODEL-I had an accuracy of 91.54% as compared 
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to MODEL-II with 87.64% accuracy.  Thus it can be 

concluded that Neural Network training algorithm is a better 

classification tool for the development of software prediction 

model than as compared to stacking model, using Naïve Bayes 

as Stacking model learner and k-NN and Neural Net as Base 

Learner. 
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