
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP. 31-35

31 | P a g e

Software Defect Prediction Using Data Mining

Classification Approach
1 Vinay kumar Dwivedi, 2 Mahesh Kumar Singh

1,2 Assistant Professor Bansal Institute of Engineering & Technology, Lucknow
1vinaydwived@gmail.com, 2mks.cse07@gmail.com

Abstract— Defect in software systems continue to be a

major problem. High quality of software is ensured by

Software reliability and Software quality assurance. A

software defect causes software failure in an executable

product. A variety of software fault predictions

techniques have been proposed, but none has proven to be

consistently accurate. The objective in the construction of

models of software error prediction is to use measures that

may be obtained relatively early in the software

development life cycle to provide reasonable initial

estimates of quality of an evolving software system. Here

various data mining classification and prediction

techniques viz. Neural Network (NN), Naïve Bayes, k-

Nearest Neighbour (kNN) have been analysed and

compared for software defect prediction model

development. For this DATATRIEVETM project carried

out at Digital Engineering, Italy has been used to validate

the algorithm. The results showed that model using NN

classification technique was a better prediction model.

Keywords— Software Defect, NN, kNN, Naive Bayes,

Classification techniques, Data Mining.

I. INTRODUCTION

Faults in software systems continue to be a major problem

[1]. They are present in a computer program as errors, flaws,

defects, failures, or faults. This hinders the software from

working in the desired manner. (e.g., a faulty result being

produced) [2]. A software fault is a defect that causes software

failure in an executable product. Number of defects in a

module of a software can be effectively identified using

Software metrics-based quality prediction models as a tool.

The use of such models before every planned release of the

product, or deployment of that may considerably improve

system quality [3]. A defective prediction model is identified

using metrics from an earlier deployment or identical projects,

and is then implementd in modules presently under

development. Afterwards, a timely prediction of that modules

needs lots of effort to get rid of the defects and then it can be

secured. Over the past decades years, several empirical studies

have been carried out to predict the fault proneness models.

Software fault prediction study can be grouped as statistical

and machine learning (ML) technique, of which the machine

learning technique is the most popular [4]. Unluckily, the

seriousness of software fault prediction have not resolved

methodically. And none of the techniques have achieved

widespread applicability in the software industry due to several

reasons, including the limitation of testing resource, absence of

software tools to mechanize this software fault prediction, the

unwillingness to collect the software defect data, lots of

method based on the private software data, and the other

practical problems.

Machine learning classification algorithm is an accepted

technique for software fault prediction [6]. Classification

forecasting has two levels: classifier construction and the usage

of the classifier constructed. The former is concerned with the

building of a classification model. Here it deals with a set of

preset classes using training dataset. Here in the training data,

all the samples are thought of as belonging to a preset class.

This is determined by the class attribute label. The model so

developed is designated as a classification rules, decision tree

or mathematical formula.

In the current work, a relative analysis of a variety of

classification techniques has been proposed for getting better

performance of software defect prediction. It is seen that

particle swarm optimization is useful for feature selection, and

bagging one for class imbalance problem. Bagging technique is

useful in managing class imbalance. The current work is

carried out using public datasets from DATATRIEVETM

project carried out at Digital Engineering, Italy.

A. Literature Review

Various techniques, such as linear regression, discriminate

analysis, decision trees, neural networks etc. have been

developed and applied to predict defects in software. Ahmet

Okutan, et.al.(2012), proposed a novel method using Bayesian

networks to explore the relationships among software metrics

and defect proneness. Mrinal Singh Rawat et. al.(2012),

identified causative factors which in turn suggest the remedies

to improve software quality and productivity. Yajnaseni Dash,

Sanjay Kumar Dubey, (2012) aimed to survey various research

methodologies proposed to predict quality of OO metrics by

using neural network approach. Ms. Puneet Jai Kaur, Ms.

Pallavi, (2013) discussed data mining techniques that are

association mining, classification and clustering for software

defect prediction. Sonali Agarwal and Divya Tomar, (2014),

proposed a feature selection based Linear Twin Support Vector

Machine (LSTSVM) model to predict defect prone software

modules. Mrs.Agasta Adline, Ramachandran. M(2014)

Predicting the fault-proneness of program modules when the

fault labels for modules are unavailable is a challenging task

frequently raised in the software industry. Pooja Paramshetti ,

D. A. Phalk, (2015), applied association rule discovery for

detecting software entities that are likely to be defective in

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP. 31-35

32 | P a g e

software systems. H. S. Shukla, Deepak Kumar Verma (2015),

analysed various literatures on defect prediction and drew

various conclusions.

B. Data Used

In the present paper various data mining classification

algorithms will be applied for the development of an efficient

predictive model. For this DATATRIEVETM project carried

out at Digital Engineering, Italy has been used to validate the

algorithm [8]. It has 130 records, which includes total nine

attributes, of which eight are condition attributes and one is

decision attribute. They are taken from open source PROMISE

Software Engineering Repository data set with the intention of

making available these datasets for the advancement of

research in the field of software engineering using different

model development techniques. This one includes a linguistic

attribute (DEFECTS) to indicate defectiveness. It is given in

0/1, which indicates no faults / faults found. Hence for the

development of the classification models these values has been

converted into NO/YES as label attributes. The descriptions of

the features are taken from

http://promise.site.uottawa.ca/SERepository/datasets/datatrieve

.arff [5].

Table 1 Input and Output model parameters used for model

development.

II. PROBLEM STATEMENT AND PROPOSED TECHNIQUE

This section presents the proposed technique to analyze

software defect data. The proposed approach uses permutation

combination of various classification techniques, viz. Neural

Network (NN), Decision tree (DT), Support Vector Machine

(SVM), K-Nearest Neighbour (k-NN). Further stacking, a meta

modeling techniques in order to enhance the accuracy of the

classification techniques have also been used in the model. In

the first stage a pre-processing model is proposed to optimize

the dataset. In the second stage experiments are performed

using the machine learning classification methods to obtain the

performance vector for various software fault prediction

models. The proposed framework is depicted in figure 1.

Figure 1: Experimental Framework for Data Analysis

III. MODEL DEVELOPMENT STAGES

In the present work two software error prediction models

have been developed using Rapid Miner tool. The details of the

two models using different algorithms are tabulated below.

Table 2: Algorithms used for MODEL-I and MODEL-II

M

od

el

Main

Proce

ss

Basic

Learn

er

Stacking

Model

Learner

Training

Algorith

m

Learnin

g

Process

I

X-

Valida

tion *** *** NN ***

II

X-

Valida

tion

k-NN,

NN

Naive

Bayes Stacking ***

k-NN= k Nearest Neighbourhood, NN=Neural Network,

The flowchart used in Rapid Miner for carrying out

software error prediction model development are given in

Figures 2 and 3 below,

Input Variable @attribute LOC6_0 numeric

@attribute LOC6_1 numeric

@attribute Added_LoC numeric

@attribute Del_LoC numeric

@attribute Diff_Block numeric

@attribute Mod_Rate numeric

@attribute Mod_Know numeric

@attribute ReusedLoC numeric

Output Variable @attribute Faulty6_1 {0, 1}

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP. 31-35

33 | P a g e

Fig 2 : Screen Shot of Main Process of MODEL-I

Fig 3 : Screen Shot of Main Process of MODEL-II

The various stages include data retrieve, normalization of

data, data validation, which includes training and testing sub-

process. In Model-I training is done using NN classifier, where

as in Model-II training includes stacking meta-learner. The

Stacking operator is a nested operator, having two sub-

processes, the base learner and the Stacking model learner. The

base learner uses kNN and NN whereas stacking model learner

uses Naive Bayes. Next, testing incorporates Apply model and

Performance Evaluation. The Apply Model operator applies

the already learnt (trained) model on an ExampleSet. The

Performance operator is used for performance evaluation, and

delivers a list of performance criteria values. These

performance criteria are automatically determined in order to

fit the learning task type.

Table 3 : Parameter Used for Model Development

Sl. No. Operator Parameter Used Type

 MODEL - I

1

Normalize a Min. val. 0

 Using range transformation b Max. Val. 1

2 Validation a no. of validations 10

 b sampling type Automatic

3 Neural Net a criterion Training cycle – 500

 Learning rate – 0.5

 Momentum – 0.9

4 Performance a Accuracy

 b Precision

 c Recall

 d RMSE

 e Absolute error

 MODEL - II

1 Validation a no. of validations 10

 b sampling type Automatic

2 k-NN a k 1

 b Measure Type Mixed Measure using Euclidean distance

3 Neural Net a criterion Training cycle – 500

 Learning rate – 0.3

 Momentum – 0.2

4 Naïve Bayes a Laplace Correction

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP. 31-35

34 | P a g e

IV. RESULTS AND DISCUSSIONS:

The dataset consists of one includes a linguistic attribute

(DEFECTS) to indicate defectiveness. It is given in 0/1, which

indicates no faults / faults found. Hence for the development of

the classification models these values has been converted into

NO/YES as label attributes.

If an attribute is labeled as yes and is classified as yes it is

counted as true positive else if it is classified as no it is counted

false negative. Similarly, if a label is labeled no and is

classified as no it is counted as true no else if it is classified as

yes it is counted as false no. Based on these outcomes a two by

two confusion matrix can be drawn for a given test set. This is

shown in Figure 4.8 and 4.9 below for both the models I and

II.

The confusion matrix in figure 4 below forms the basis for the

calculation of the following metrics.

i. Accuracy = (tp+tn)/ (P+N)

ii. Precision = tp/ (tp+fp)

iii. Recall/ true positive rate = tp/P

iv. F-measure =2/ ((1/precision)+(1/recall))

Fig. 4 : Confusion Matrix for MODEL- I &II

The accuracy of the models I and II are 91.54 and 87.69

and their graphical representation are shown in Fig. 5 below.

Fig. 5: Graphical Representation of Model Accuracy

Further below is given the tabulation of Absolute error,

RMSE, Recall, Precision and f-measure of both the ModelsI

and II.

Table 4: Error Values of Model – I & II

Model No. Abs. Error RMSE

I 0.124 0.276

II 0.126 0.338

Fig. 6 : Comparative Plot of AE and RMSE OF MODEL-I

and MODEL-II

Table – 5

Model No. Precision Recall f-Measure

I 50 15 26.67

II 22.22 15 20

Fig. 7 : Comparative Plot of MODEL-I and MODEL-II

From the above analytical study of Table 4 and 5 and their

respective graphs in Fig. 5, 6 and 7 as regards the performance

analysis of both the MODEL –I and MODEL-II, it can be seen

that MODEL-I has a prediction accuracy of 91.54% a

compared to that of MODEL-II with 87.69% accuracy. The

RMSE and AE values are also better for MODEL-I as

compared to MODEL-II. Although Recall for both the models

are almost same, but Precision and f-measure for MODEL-I is

better than MODEL-II. Thus MODEL-I using Neural Network

training algorithm has been able to develop a better model as

compared to MODEL-II using Stacking as training algorithm.

Conclusion

Software developers and quality control managers must

come out with a variety of combinations like persons, tools,

development techniques, etc. so as to be able to develop quality

products and be able to deliver it on time, that too within

budgetary cost. Thus in order to tackle the above entioned

issues. An attempt has been made in the present work for

software error prediction. Here various data mining

classification and prediction techniques viz. Neural Network

(NN), Naïve Bayes, k-Nearest Neighbour (kNN) have been

analysed and compared for software defect prediction model

development. For this DATATRIEVETM project carried out at

Digital Engineering, Italy has been used to validate the

algorithm. It has 130 records, which includes total nine

attributes, of which eight are condition attributes and one is

decision attribute.

Two model MODEL-I and MODEL-II were developed and

compared. MODEL-I was developed using NN training

algorithm and was found to be a better prediction model as

compared to MODEL-II which used stacking as training

algorithm. MODEL-I had an accuracy of 91.54% as compared

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP. 31-35

35 | P a g e

to MODEL-II with 87.64% accuracy. Thus it can be

concluded that Neural Network training algorithm is a better

classification tool for the development of software prediction

model than as compared to stacking model, using Naïve Bayes

as Stacking model learner and k-NN and Neural Net as Base

Learner.

REFERENCES

[1] Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K.

Bains, Manpreet Kaur, Gurvinder Singh, "A Study on Early

Prediction of Fault Proneness in Software Modules using

Genetic Algorithm", World Academy of Science, Engineering

and Technology, 2010, pp. 648-653.

[2] http://puretest.blogspot.com/2009/11/1.html

[3] Ahmet Okutan, et. al., (2012), “Software defect prediction using

Bayesian networks”, Empir Software Eng (2014) 19:154–181

[4] Mrinal Singh Rawat, et. al.,(2012), “Software Defect Prediction

Models for Quality Improvement: A Literature Study”, IJCSI

International Journal of Computer Science Issues, Vol. 9, Issue

5, No 2,

[5] DATATRIEVETM project DATABAASE,

http://promise.site.uottawa.ca/SERepository/datasets/datatrieve.

arff .

[6] Jang, J-S. R., (1993), “ANFIS-Adaptive-Network Based Fuzzy

Inference System”, IEEE Transactions on Systems, Man and

Cybernatics, 23(3), pp 665-685.

[7] Sonali Agarwal and Divya Tomar, (2014), “ A Feature Selection

Based Model for Software Defect Prediction”, International

Journal of Advanced Science and Technology Vol.65 (2014),

pp.39-58.

[8] Romi Satria Wahono and Nanna Suryana (2013), “Combining

Particle Swarm Optimization based Feature Selection and

Bagging Technique for Software Defect Prediction”,

International Journal of Software Engineering and Its

Applications Vol.7, No.5 (2013), pp.153-166.

[9] Ahmet Okutan, Olcay Taner Yıldız,(2012) “Software defect

prediction using Bayesian networks”, Empir Software Eng

(2014) 19:154–181 © Springer Science+Business Media, LLC.

[10] Mrinal Singh Rawat, Sanjay Kumar Dubey,(2012) “Software

Defect Prediction Models for Quality Improvement: A

Literature Study”, IJCSI International Journal of Computer

Science Issues, Vol. 9, Issue 5, No 2, pp 288-296.

[11] Yajnaseni Dash, Sanjay Kumar Dubey, (2012), “ Quality

Prediction in Object Oriented System by Using ANN: A Brief

Survey”, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 2, Issue

2,, pp.1-6.

[12] Ms. Puneet Jai Kaur, Ms. Pallavi, (2013), “ Data Mining

Techniques for Software Defect Prediction”, International

Journal of Software and Web Sciences (IJSWS), International

Journal of Software and Web Sciences 3(1), pp. 54-57.

[13] Sonali Agarwal and Divya Tomar, (2014), “ A Feature Selection

Based Model for Software Defect Prediction”, International

Journal of Advanced Science and Technology Vol.65 (2014),

pp.39-58.

[14] Mrs.Agasta Adline, Ramachandran. M(2014), “Predicting the

Software Fault Using the Method of Genetic Algorithm”,

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering, Vol. 3, Special

Issue 2,, pp 390-398.

[15] Pooja Paramshetti, D. A .Phalk, (2015), “Software Defect

Prediction for Quality Improvement Using Hybrid Approach”,

International Journal of Application or Innovation in

Engineering & Management (IJAIEM), Volume 4, Issue 6, June

2015, pp.99-104.

[16] H. S. Shukla, Deepak Kumar Verma (2015), “A Review on

Software Defect Prediction”, International Journal of Advanced

Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 12, pp. 4387-4394.

