

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 2, Issue 6 (Nov-Dec 2014), PP. 65-68

65 | P a g e

DEVELOPMENT OF A SOFTWARE

MAINTENANCE COST ESTIMATION MODEL:

4TH GL PERSPECTIVE
Mohammad Islam1, Dr. Vinodani Katiyar2

1Research Scholar, Shri Venkateshwara University, Gajraula, UP, India
2Professor, SRM, University, Lucknow, UP, India

1mohdislam3@gmail.com, 2drvinodani@gmail.com

ABSTRACT- The software industry has had significant progress

in recent years. The entire life of software includes two phases:

Production and Maintenance. Software maintenance cost is

increasingly growing and estimates showed that about 90%, if

software life cost is related to its maintenance phase. Extraction

and considering the factors affecting software maintenance cost

help to estimate the cost and reduce it by controlling the factors.

Cost estimation of maintenance phase is necessary to predict the

reliability, improve the productivity, project planning, controlling

and adaptability of the software. Though there are various models

to estimate the maintenance cost of traditional software like

COCOMO, SLIM, Function Point etc., but till now there is no

such model to estimate the maintenance cost using fourth

generation language environment. Software maintenance will

continue to exist in the fourth generation environment, as systems

will still be required to evolve. In this kind of situation there is

needed to develop a model to estimate the maintenance cost using

fourth generation environment. We propose a systematic

approach and development for software maintenance cost

estimation model using fourth generation language environment

on the basis of COCOMO II. This model is based on three

parameters: SMCE with Fourth Generation Language

Environment, ACT (Annual Change Traffic), Technical and Non-

Technical factors which affect the maintenance cost. The

favorable results closely matching and it can be achieved by using

model implementation.

Keywords- Cost Estimation, Software Maintenance, Fourth

Generation Language Environment, Cost affecting factors

(Technical and Non-Technical), Improved Cost Estimation model,

ACT (Annual Change Traffic).

I. INTRODUCTION

A. Cost Estimation

In recent years software has become the most expensive

exponent of computer system projects. The bulk of the cost of

software development is due to the human effort and most

maintenance cost estimation methods focus on this aspect and

give estimates in terms of Person-Months. Accurate software

cost estimates are critical to both development and customers.

They can be used for generating request for proposals, contract

negotiations, scheduling, monitoring and control. Cost

estimation is an imprecise science, as there are many variables

such as human, technical, environmental and political which

can affect the ultimate costs of software and the resources

required to maintain it. Some of the factors appear more

obvious than other. To fully estimate software maintenance

costs these factors need to be identified and weights assigned

to them.

Underestimating the cost may result in management

approving proposed systems that then exceed their budgets

with underdeveloped functions and poor quality and failure to

complete on time. Overestimating may result in too many

resources committed to the project or during contract bidding

which can lead to loss of jobs. Accurate cost estimation is

important because:

 Projects can be easier to manage and control when

resources are better matched to real needs.

 It can help to classify and prioritize development

projects with respect to an overall business plan.

 Customers expect actual development costs to be in

line with estimated costs.

 It can be used to determine what resources to commit

to the project and how well these resources will be

used.

B. Software Maintenance

Software maintenance is an important activity in software

engineering. Over the decades, software maintenance costs

have been continually reported to account for a large majority

of software costs. Software maintenance is defined as the

process of changing, modifying, updating, repairing or existing

operational software, but leaving its primary functions intact

(Boehm, 1981, pp.54-55). This definition excludes major

enhancements (Boehm, 1981, pp.534-535) and hence differs

from Swanson’s typology (Swanson and Chapin, 1995). In

other words the maintenance is about actions taken when a

product does not function properly. Software maintenance

workload is very large; although in different applications of its

maintenance cost vary widely but averagely, the maintenance

cost of large software development costs as high as 4 times.

Several surveys indicate that software maintenance consumes

60% to 80% of the total life cost; these surveys also report that

maintenance costs are largely due to enhancements (often 75%

- 80%), rather than corrections (Canfora-2000). The relative

cost for maintaining software and managing its total cost

(Koskinen-2010). International Electro-technical Commission

activities in accordance with the needs of software

maintenance, it will be divided into the following five

categories: (a) Repair of maintenance (b) Preventive

maintenance (c) Integrity of maintenance (d) Adaptability

maintenance and (e) Evolution of maintenance.

C. Fourth GL Environment

The term fourth generation language refers to a class of

data processing language developed in the mid 1970’s that

offer simplified expressions for common data processing tasks.

These languages allow for systems development in

significantly less time than with third generation language.

Fourth generation languages were developed to make life

easier for the application programmer. With most fourth

generation languages there are a set of predefined defaults

which the compiler or interpreter uses to make assumptions

about the user’s needs. One of the advantages of fourth

generation languages is that it allows parts to be rewritten more

quickly than with a third generation language.

Martin [MARTIN83] has said that a characteristic of a

fourth generation language is that an analyst can obtain results

faster than he could write specifications for a programmer. The

mailto:mohdislam3@gmail.com
mailto:drvinodani@gmail.com

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 2, Issue 6 (Nov-Dec 2014), PP. 65-68

66 | P a g e

analyst then works hand in hand with the user, creating what

the user asks for and refining it in a step by step fashion to

adapt it better to the user’s needs.

In the United Kingdom 45% of installations were making

significant use of fourth generation languages in 1986, and a

further 30% were planning to introduce them in the near future

[IDPM86], so in a few years software maintenance using

fourth generation language is likely to be a major factor to

many companies.

Although the term fourth generation language is in

common use, they consist of a range of products, and it would

be more applicable. Fourth generation languages are not just

one type of tool, they consist of a wide range of products, and

to enable them to be compared, it is necessary to classify them

into categories. A report by the Institute of Data Processing

managers [IDPM86] produced a list of 4 classifications of

fourth generation languages and this is produced below:

(a) Application builders (b) Transaction processing builders

 (c) Management information systems (d) End user

products.

II. RELATED RESEARCH WORKS

 Software cost estimation has attracted tremendous

attention from the software engineering research community. A

number of studies have been published to address cost

estimation related problems, such as software sizing, software

productivity factors, cost estimation models for software

development and maintenance.

 Mr. Boehm studied the various cost factors in the simple or

complex public system. The results of his research are

published in details in the book (Software Architectures:

Critical Success Factors and Cost Drivers). Many

researchers focused on models and different methods of

cost estimation, but what is important is to update and

review each model factors. These models include analog

models such as the Delphi method or estimations based on

professional experience, model such as analysis of

performance indicators and models of machine learning

algorithms including neural network, genetic programming,

fuzzy logic and many other models.

 Henry Raymond (2010) in a study used the estimation

techniques along with the knowledge of the project team,

project manager and the president to design a predictive

model for estimating the software. This model suggests that

the maintenance plays an important role in the success of

IT projects. Though the effective use of technology for

estimating the time and cost is necessary but is not

sufficient. To predict the exact time and cost, the

management needs the knowledge, knowledge integration

and sharing it.

 The studies by Sneed and Jorgensen (2009) provided us

with a sound basis for our approach by identifying: (a) the

kind of factors being critical to the success of a

maintenance operation and (b) evaluating the precision of

different types of arithmetic models. Nevertheless, most

models and approaches proposed were either not easily

generalizes due to highly specialized scenarios, too abstract

to implement or not meeting our requirements. In

particular, the challenge to predict maintenance costs for a

huge number of heterogeneous applications turns out to

differ much from estimating maintenance cost benefit for a

single application or a single system being under

development.

 Many estimation models have been proposed and applied

over the years. The review of major estimation models that

have been development, continued to be applied and

marketed by respective developers, these models including

SLIM, SEER-SEM, PRICE-S, Knowledge Plan and

COCOMO. There are several reasons for this selection:

First, they represent the core set of models that was

development in the early 1980’s and 1990’s. Second, they

are still being investigated and used widely in practice and

literature. There long robustness and usefulness. Third,

these models perform estimation for a broad range of

software development and maintenance activities, covering

a number of phases of software lifecycle such as

requirements, architecture, implementation, testing and

maintenance.

 Although the area of software maintenance estimation has

received less attention as compared to that of new

development, given the important of software maintenance,

a number of models have been introduced and applied to

estimating the maintenance costs. These models address

diverse sets of software maintenance work, covering, error

corrections, functional enhancements, technical renovations

and reengineering. They can be roughly classified into three

types based on the granularity level of the estimation focus:

Phase, Release and Task Level maintenance estimation

models.

III. PROPOSED SOFTWARE MAINTENANCE COST

ESTIMATION MODEL

 COCOMO (Constructive Cost Model) is used as a base

model to estimate the cost of software project. This model was

developed by Barry W. Boehm and published in 1981 using

data collected from 63 projects. We proposed a systematic

approach for software maintenance cost estimation model

using fourth generation language environment on the basis of

COCOMO II. This model is based on three specific

parameters: SMCE with Fourth Generation Language

Environment, ACT (Annual Change Traffic), Technical and

Non-Technical factors which affect the maintenance cost. The

model which we have proposed is shown below:

(Implementation of Modeling Process)

This model proposes the approach to estimate maintenance

cost of software. This process can be processed in two ways.

Firstly if the work is of only maintenance then works on

Software Maintenance Cost Estimation (SMCE) with 4-GL

Environment. Then depending on technical and non technical

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 2, Issue 6 (Nov-Dec 2014), PP. 65-68

67 | P a g e

factors we will be able to estimate the cost of maintenance of

the software. If we are familiar with the development process

of the subject software then flow of model will include its

Project Features. Project feature includes selected model

adjustment and application with its characteristic; Annual

Change Traffic could be estimated using the History Table

which includes the database. Maintenance cost includes the

software maintenance cost estimation using fourth generation

languages environment with the help of weights factors.

Maintenance cost could be estimated using the result of ACT

report, weights of technical and non-technical factors and

development cost.

To estimates the software maintenance cost, there are three

main parameters used:

(a) Software Maintenance Cost Estimation with Fourth

Generation Language Environment.

(b) Existing Technical and Non-Technical Factors.

(c) ACT (Annual Change Traffic).

A. Software Maintenance Cost using Forth Generation

Languages.

Software maintenance is consuming vast quantities of data

processing resources which have meant that new software

cannot be produced quickly enough. One solution to this

problem has been the use of fourth generation languages which

allow software to be developed more quickly than would

otherwise be the case. This change has led to an increase in the

amount of software to be maintained. Grindley [IDPM86]

reported that some companies with experience of fourth

generation languages found it economically sensible to

consider rewriting their systems rather than maintaining and

patching existing software. There are several types of effect

which this move to fourth generation languages can have on

software maintenance:

 Simple hidden errors can be avoided, a fourth generation

language can deal with certain aspects of the system

automatically, and for example it can determine the first

and last records.

 Many fourth generation languages are linked to data

management systems with built in data dictionaries. The

programmer cannot misrepresent the data or fail to declare

variables.

 Many fourth generation languages are self documenting.

Poor documentation is likely to be a cause of maintenance

difficulties with third generation languages.

 Fourth generation language make the understandability of

a program clearer, and therefore easier for maintenance by

the third person.

 Many fourth generation languages disallow ill-structured

program constructs which can cause trouble later.

B. Factors Affecting Software Maintenance Cost.

Software maintenance costs affect the main factors.

Technical Factors

 Maintenance Staff Ability: Maintenance is a highly human

intensive activity. It requires a lot of training to make new

people adept in maintenance task of a software product or

service. The maintenance effort and cost effort increase

substantially if the team members are shuffled across groups

very often or if they keep leaving their jobs quite frequently.

Also maintenance staff ability in terms of maintenance

experience can have significant impact on the maintenance

activity.

 Internal Complexity: It defines how much the internal

working of component or system is complex. A weight value

0 means easy- to- integrate components are available that has

very simple interface as well as simple implementation.

 Documentation Quality. If the documentation is poor or

system code or design is poorly documented, then it will be

very costly to find and correct any errors that are present in

the system. This observation points towards the fact that

documentation quality also has a serious effect on

maintenance effort.

 Testing Quality. As the experience of software engineering

has shown that the number of errors can be significantly

reduced by applying an effective testing strategy. With

reduced errors, maintenance effort can be quite low. So,

better testing quality reduces maintenance effort.

 System Life Span. A system with longer lifespan requires

more maintenance efforts than a system with shorter one.

Many small scale faults in the system can be ignored if the

lifespan of the system is short (a few months for example).

However, even these small shortcomings can cause a lot of

damage for a system in a long run if it has a longer life span

(a few years at least). The system life span can have

significant impact on degree of hardware dependability with

respect to application type.

 Code Quality. Locating faults in an unstructured code or

the code that does not implement the guiding principles of its

architecture, is very difficult. This ultimately affects

software maintenance effort. However, as we are concern

with architecture based software maintenance, so we will

ignore this factor.

 Application Type. Application type represents different

application areas. Each application is characterized by

special attributes as given in their work.

 Interface Complexity: How much complex is interfacing of

the components? If interface complexity is high then the

maintenance cost of Component Based Software will be

high.

 CASE Tools: CASE (Computer Aided Software

Engineering) tools are software programs that are designed

to assist human programmers with the complexity of the

processes and the artifacts of software engineering. CASE

stands for a large number of applications reaching from

simple editing tools to environments supporting the whole

life cycle. Table 1 is shown below:

C. Non-Technical Factors

 Understandability. When programmers try to perform some

maintenance of a system developed by other programmers,

the difficulty of understanding the system limits

maintenance. Therefore, it is important that the maintainer

gains a complete understanding of the structure, behavior

and functionality of the system being maintained.

 Probability. During the lifetime of the system, each scenario

will have certain likelihood of occurrence. Therefore, each

scenario is assigned a probabilistic importance

 Technology Newness: A potential cause to software

maintenance risk is the newness of the technology being

implemented. It is also affected by its volatility, which

implies the frequency with which it keeps changing.

 Organization Maturity: Organization maturity in terms of

its quality certification and/or CMM level defines a

minimum guarantee level for quality of development

process. A highly placed organization is assumed to have

quality skilled staff, defined and repeatable processes along

with procedures for defect prevention and continuous

improvement. This surely reduces the dependability on

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 2, Issue 6 (Nov-Dec 2014), PP. 65-68

68 | P a g e

experts, reduced effort requirement for quality software

development.

D. Estimation of ACT (Annual Change Traffic):

In a survey of 63 products in various application areas,

Boehm [B0EHM81] developed a formula for estimating

software maintenance costs. The estimation is calculated in

terms of the Annual Change Traffic (ACT), defined as "The

fraction of a software product's source instructions which

undergo change during a (typical) year, either through addition

or modification". The ACT quantity is used, in conjunction

with the actual or estimated development effort in person

months, to derive the annual effort for software maintenance.

ACT is another parameter that is used to estimate the

maintenance cost. It includes the proportion of original

instruction that undergo a change during a year by addition or

modification, if ACT is given. For estimating the ACT of

future software project we start with the existence of a series of

given characteristics of a software project. The characteristics

must be believed to important influences upon ACT. The

characteristics should be evaluated and revised periodically by

the company’s experts to identify critical characteristics of the

projects covered in the History Table (HT). Based upon the

data in the HT, each characteristic will be assigned a weight pj

which permits us to give appropriate recognition to every

characteristic based upon accumulated ACT data. Each project

will only have two possibilities for every characteristic that is,

to have it or not.

IV. CONCLUSION

 Software maintenance cost estimation models helps to

improve the impact of maintenance cost factor. Barry W.

Boehm’s in-depth analysis of 17 factors derived from the

actual use of the software based on the specific situation of the

affected software, the cost of maintenance, the weight factors

and work to make proper adjustments software maintenance

cost estimation closer to the actual value. We propose a

systematic approach for software maintenance cost estimation

model using fourth generation language environment on the

basis of COCOMO II. This model is based on three parameters

which are given. Favorable results can be achieved by using

model implementation. In this paper the problems of

estimating the cost of the maintenance process have been

solved with our model using fourth generation language

environment and data collected from previous projects based

on COCOMO II model. By applying the proposed model and

procedures to these historical data, control over current and

future maintainability can be improved and thereby

unnecessary and unproductive maintenance costs can be

avoided. This model is applicable for providing the accurate

estimates, improving the adaptability of software, developing

and understanding between the user, customer and third party.

As part of the future work, we will improve our cost estimation

model by extending the data pool to cover additional

applications. The software estimation model has to be

recalibrated and extended to more reflect more closely the

software development and maintenance practice. The future

perspective this model can be enhanced to calculate the

maintenance cost of large data projects.

REFERENCES

[1] Byoung-Chol Lee and Sung Yul Rhew “An Empirical Study on

Adjustment Factors to Estimate Maintenance Cost of Applications

Developed Using Components”, SoongSil University, Seoul, 156-

030, Republic of Korea, Lecture Notes on Software Engineering,

Vol. 2, No. 1, February 2014.

[2] Marounek P. “Simplified Approach to effort estimation in

software maintenance”, University of economic, Prague, Faculty

of information and statistics, Journal of systems integration, 2012:

51-63.

[3] Marounek P. “SW Support and maintenance: Extension of

ontology about COE concept”, simplification of effort estimation,

thesis, Prague, VSE-FIS, 2012.

[4] T. Wijayasiriwardhane, R. Lai, K. C. Kang, “Effort Estimation of

Component based software development”, a survey IET Software,

vol. 5, pp. 216-228, 2011.

[5] Roger S. Pressman, Software Engineering: A Practitioner’s

Approach Seventh Edition, McGraw-Hill Higher Education, 2010.

[6] Deutsche Post DHL, “Deutsche Post DHL investors’ MAIL-facts

and figures”, 2010.

http://investors.dpdhl.de/reports/2010/factbook/the-segments/mail-

facts-figures.html

[7] Nguyen Vu. “Improved Size and Effort Estimation Models for

Software Maintenance”, University of Southern California, 2010.

http://csse.usc.edu/csse/TECHRPTS/PhD_Dissertations/files/Ngu

yen_Dissertation.pdf

[8] Nguyen V., Boehm B.W., Danphitsanuphan P. (2010), “A

Controlled Experiment in Assessing and Estimating Software

Maintenance Tasks”, APSEC Special Issue, Information and

Software Technology Journal, 2010.

[9] V. Nguyen, B. Boehm, and P. Danphitsanuphan, “Assessing and

estimating corrective, enhancive and reductive maintenance tasks:

A controlled experiment”, IEEE, 2009, pp. 381-388.

[10] Kitchenham, B.A. and Mendes, E. (2009). “Why comparative

effort prediction studies may be invalid.” In Proceedings of the

5th international Conference on Predictor Models in Software

Engineering, pp. 1-5.

[11] Shukla, R and Misra, A. K. 2009. AI Based Framework for

Dynamic Modeling of Software Maintenance Effort Estimation,

Proceedings of International Conference on Computer and

Automation Engineering, 313-317.

[12] Ren YC, “Research on Software Cost Estimation and its Expert

System”, Doctor’s degree of Liaoning Technical University, 2008.

[13] Shen J. “Development of a Software Effort and Cost Estimation

Tool Based on EFMSEC”, Faculty of Graduate Studies,

University of Calgary, 2008.

[14] Boehm B.W., Valerdi R. (2008), "Achievements and Challenges

in COCOMO-Based Software Resource Estimation," IEEE

Software, pp. 74-83, September/October.

[15] Nguyen V., Steece B., Boehm B.W. (2008), “A constrained

regression technique for COCOMO calibration”, Proceedings of

the 2nd ACM-IEEE international symposium on Empirical

software engineering and measurement (ESEM), pp.213-222.

[16] Shukla, R. and Misra, A. K. 2008. Estimating software

maintenance effort - A neural network approach, Proceedings of

the 1st India Software Engineering Conference - ISEC,

Hyderabad, India, 107-112.

[17] Li SM, He M, Yang D, et al., “Software Cost Estimation Method

and Application”, Journal of Software, vol. 18, no. 4, pp. 775-795,

2007.

[18] Boehm BW. Software Architectures: “Critical Success Factors and

Cost Drivers”, IEEE transactions on Software Engineering, 2007:

965-971.

[19] Bhatt, P., Shroff, G., Anantram, C. and Misra, A. K. 2006. An

influence model for factors in outsourced software maintenance, J.

Software Maintenance and Evaluation: Res. and Practice, 18, 385-

423.

http://investors.dpdhl.de/reports/2010/factbook/the-segments/mail-facts-figures.html
http://investors.dpdhl.de/reports/2010/factbook/the-segments/mail-facts-figures.html
http://csse.usc.edu/csse/TECHRPTS/PhD_Dissertations/files/Nguyen_Dissertation.pdf
http://csse.usc.edu/csse/TECHRPTS/PhD_Dissertations/files/Nguyen_Dissertation.pdf

