
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 134-137

134 | P a g e

ONE HIDDEN LAYER ANFIS MODEL FOR OOS

DEVELOPMENT EFFORT ESTIMATION
Sheenu Rizvi1, Dr S.Q.Abbas2, Dr Rizwan Beg3

1Department of Computer Science, Amity University, Lucknow, India
2A.I.M.T, Lucknow, India

3Integral University, Lucknow, India

Abstract: In the present paper, applicability and

capability of A.I techniques for effort estimation prediction has

been investigated. It is seen that neuro fuzzy models are very

robust, characterized by fast computation, capable of handling

the distorted data. Due to the presence of data non-linearity, it is

an efficient quantitative tool to predict effort estimation. The one

hidden layer network has been developed named as OHLANFIS

using MATLAB simulation environment.

Here the initial parameters of the OHLANFIS are

identified using the subtractive clustering method. Parameters of

the Gaussian membership function are optimally determined

using the hybrid learning algorithm. From the analysis it is seen

that the Effort Estimation prediction model developed using

OHLANFIS technique has been able to perform well over normal

ANFIS Model.

Keywords: ANFIS, Neural network, COCOMO-II, effort

estimation, OOS

I. INTRODUCTION

Effort estimation of computer system software projects

design play very significant role in the expansion of the

software projects. When a estimated effort is less than the

actual effort involved then it may generate number of issue

that can directly effects the project quality, purposed time of

completion, pressure on developing experts in terms of

working overtime. A general issue in programming effort

estimation is that verifiable information regularly holds an

inclination to the goal that these information cannot directly be

utilized for advancement of expense estimation devices,

individually for the adjustment of such instruments and

looking at estimations against its true or recorded effort value.

Accurate effort and scheduling estimations provide very

highly valuable medium in a number of designing decisions,

financial expense decisions, and team work allocations and in

supporting reliable bids for contract competition[1].

Evaluating programming improvement sets back the

finances with correctness is generally a very troublesome

regular approach for enhancing programming or software

performance. The extra objective of having the capacity to

anticipate the expenses and calendar at the start of the venture

can end up being all the more testing. Unanticipated forecast

of finishing time is completely vital for fitting development

arranging and abhorrence of the project[2,3].

Nevertheless, utilizing the whole database of accessible

programming effort estimation displays, researchers found that

there is no confirmation that programming models are

adequate at assessing ventures at an early phase of framework

improvement.

A. Problem of object-oriented software effort

estimation:

Many object-oriented software effort estimation methods

have been proposed over the last decade. Effort prediction

models using object-oriented design metrics can be used for

obtaining estimates about software project performance and

quality. In practice, effort estimation means either estimating

reliability or maintainability [4]. Reliability is generally

represented as the number of pre-release or post-release

defects. Hence by effort estimated the number of active

defects can also be normalized by a size measure to obtain a

defect density estimate. Another parameter is related to issue

of maintainability which is normally represented as a change

effort. Change effort is explained as: ‘either the average effort

to make a change to a class or the total effort spent on

changing a class’. There is great interest in the use of object-

oriented based approach in software engineering. With the

increasing use of object-oriented methods in new software

development there is a growing demand to both in documents

and current practices in object-oriented design and

development.

Many methods have been proposed in the last two

decades to estimate the quality of object-oriented software

code and design efforts and used for detecting fault-proneness

of classes. Most of the OOS effort estimation methods have

some limitations that the organizing heads and developers

need to be aware of [3, 5] so that the effort estimation may be

viewed as valuable tools in the software engineering process.

A common approach concerning the OOS effort

estimation based models is that they base their effort and

scheduling predictions on the estimated size of the software

project at hand , in terms of number of lines of code (LOC),

or thousands of lines of code (KLOC). In most of the

methodologies the OOS effort estimation is based upon an

equation similar to:

E = A + B*(KLOC)C 1(a)

where E stands for estimated effort (usually in many

months), A, B, and C are constants, and KLOC is the expected

number of thousands of lines of code in the final system.

From the above equation it is easy to see that a given

percentage error in the size (KLOC) may cause an even larger

percentage error in the estimated effort. For instance, in

COCOMO a 50% error in the size estimate will roughly result

in a 63% error in the effort estimate. [3, 4, 6, 8, 15]. Many

investigations using statistical methods had been made to

predict software quality. In this paper we focused on the

object-oriented software effort estimation approach. This

document explores object-oriented paradigm that exhibits

different characteristics from the procedural paradigm and the

different software metrics that has been defined and used. We

proposed various artificial intelligence based optimization

approach that aims to predict object oriented software design

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 134-137

135 | P a g e

effort by using the number of lines other software design

related parameters. We have considered software design

metrics concerning with inheritance related measures,

cohesion measures, coupling measures, complexity measures

and size measure. We discussed about network and fuzzy

based predictors to improve estimation results for OOS design.

Neural network based method is a back propagation network

with different activation functions. They are applied to hidden

layer slabs to detect different features in a pattern processed

through a network to lead to better prediction. By using proper

functions in one hidden slab we can detect feature in the mid-

range of the data and the complement of chosen function in

another hidden slab is used to detect features for the upper and

lower extremes of the data. Thus, the output layer will get

different “views of the data”. Combining the two feature sets

in the output layer leads to a better estimation.

Another architecture that we have chosen is the Adaptive

neuro-fuzzy inference system (ANFIS).It is a memory-based

network that provide estimates of continuous variables and

converges to the underlying (linear or nonlinear) regression

surface. This is a one-pass learning algorithm with a highly

parallel structure. Even if the data is sparse in a multi-

dimensional measurement space; the ANFIS algorithm [6]

provides smooth transitions from one observed value to

another. Most of these prediction models can be built using

statistical models. A.I techniques have seen an explosion of

interest over the years, and are being magnificently applied

over a large range of problem domains, in areas as diverse as

finance, medicine, engineering, geology and physics. Indeed,

in the cases there are problems of prediction, classification or

control, these methods are being introduced. We have found

that these methods can be used as a predictive model because

it is very sophisticated modeling techniques capable of

modeling complex functions.

B. Framework work for object oriented s/w effort

estimation

The COCOMO model database is used due to its

popularity for software effort estimation. This dataset has been

validated on estimation of large projects at consulting firm,

Teen Red Week (TRW) software production system (SPS) in

California, USA [8]. The structure of the dataset has been

divided on the basis of the parameters of projects to be

handled. The projects are categorized as organic,

semidetached, and embedded. The model structure that we

have followed is represented as follows:

Effort=𝑎∗(KLOC)𝑏 (1b)

Here a and 𝑏 are domain specific constants. For estimating the

object oriented software development effort, 𝑎 and 𝑏 have

been adjusted on the past data set of various projects. Five

scale factors are considered to generalize and demonstrate the

effects of the development mode in COCOMO II [9,10]. There

are fifteen constraints which acts as parameter that can affect

the effort involved in the software development. These

constraints are analyst capability (𝑎𝑐𝑎𝑝), programmer

developer capability (𝑝𝑐𝑎𝑏), application related expertise

(𝑎𝑒𝑥p), modern based programming expertise (𝑚𝑜𝑑exp),

software tools involved in development, design and testing

(𝑡𝑜𝑜𝑙), virtual memory experience (V𝑒𝑥𝑝), language expertise

(𝑙𝑒𝑥𝑝), scheduling constraint (𝑠𝑐𝑒𝑑), main memory constraint

(𝑠𝑡𝑜𝑟), database size requirement (𝑑𝑎𝑡𝑎), CPU related time

constraint (𝑡𝑖𝑚𝑒), turnaround time (𝑡𝑢𝑟𝑛), machine volatility

(V𝑖𝑟𝑡), process complexity (𝑐𝑝𝑙𝑥), and reliability of the

required software (𝑟𝑒𝑙𝑦):

Effort=𝑎∗(KLOC)𝑏∗𝑐 (2)

KLOC is directly computed from a function point analysis and

𝑐 is the product of fifteen effort multipliers hence effort can be

represented as:

Effort=𝑎∗(KLOC)𝑏∗(EM1∗EM2∗⋅⋅⋅∗EM15) (3)

Above prediction model of software development effort

estimation is applied to estimate the software development

effort by using sixteen independent specifications named as

𝑟𝑒𝑙𝑦, 𝑑𝑎𝑡𝑎, 𝑐𝑝𝑙𝑥, 𝑡𝑖𝑚𝑒, 𝑠𝑡𝑜𝑟, V𝑖𝑟𝑡, 𝑡𝑢𝑟𝑛, 𝑎𝑐𝑎𝑝, 𝑎𝑒𝑥𝑝,

𝑝𝑐𝑎𝑏,V𝑒𝑥𝑝, 𝑙𝑒𝑥𝑝, 𝑚𝑜𝑑𝑝, 𝑡𝑜𝑜𝑙, 𝑠𝑐𝑒𝑑 and 𝑘𝑙𝑜𝑐.

All these sixteen parameters are used as input vector in one

hidden layer feed forward ANFIS network discussed in next

section.

C. Effort Estimation Using One Hidden Layer ANFIS

Network (OHLANFIS)

Through back propagation with gradient descent training,

mapping between input vectors and output vectors an ANFIS

network has been developed with the target of minimization of

the sum of squared error at output layer. The optimal weight

vectors are evaluated for the network to estimate the software

development effort of database given in COCOMO II model

for object oriented software projects. The optimal weight

vector obtained from ANFIS network is being used as testing

the results for an optimized network with minimum root mean

square error value and high regression.

OHLANFIS is developed with gradient descent back

propagation learning method for optimizing this model in

reference of estimation of the object oriented software

development effort.

We have considered input vector 𝑋𝑇𝑘=(𝑥1;𝑥2;...𝑥𝑛)

where 𝑛=16 and output vector 𝐷𝑇𝑘=(𝑑1;𝑑2;...𝑑𝑝). The

OHLANFIS network is trained by using the input and output

vector mapping. 𝑃 is set of 𝑄 training vector pairs:

𝑃= {𝑋𝑘, Dk }Q
k=1 (4)

𝑋𝑘∈ Rn and 𝑘∈𝑅𝑝, where𝑛=16, 𝑝=1, and 𝑄=40.

Here neuro-fuzzy rules are generated for 𝑘 output signal

vector(𝑌𝑘)and𝑌𝑘 is vector of activations of output layer fuzzy

rules. Error at 𝑘th training pair (𝑋𝑘, Dk) is evaluated as

follows:

𝐸𝑘=𝐷𝑘− f(𝑌𝑘), (5)

 Where, 𝐸𝑘 =(𝑒𝑘1,...𝑒𝑘𝑝)𝑇

= (𝑑𝑘1−f(𝑦𝑘1),...,𝑑𝑘𝑝−𝑓(𝑦𝑘𝑝))𝑇 (6)

The squared error is considered taken as sum of squares of

every individual output error 𝑒𝑘𝑗 given as:

𝜉𝑘=1/2.∑(𝑑𝑘𝑗 −𝑓(𝑦𝑘𝑗))2=1/2.𝐸k𝑇𝐸𝑘 (7)

The MSE is computed over the entire training set 𝑃:

MSE=1/𝑄∑𝜉𝑘. (8)

The weights between hidden and output layer are updated as

𝑤𝑘+1 ℎ𝑗 =𝑤𝑘ℎ𝑗+Δ𝑤𝑘ℎ𝑗 (9)

and the weights between input and hidden layer are updated as

 𝑤 𝑘+1
𝑖ℎ =𝑤𝑘𝑖ℎ +Δ𝑤𝑘𝑖ℎ (10)

where Δ𝑤𝑘ℎ𝑗 and Δ𝑤𝑘𝑖ℎ are weight changes computed in

previous step.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 134-137

136 | P a g e

These weights are iteratively updated in output and hidden

layers by the following equations:

Δ𝑤 𝑘+1
ℎ𝑗 =Δ𝑤𝑘ℎ𝑗+𝜂(𝑧𝑘ℎ),

Δ𝑤 𝑘+1
𝑖ℎ =Δ𝑤𝑘𝑖ℎ+𝜂𝛿𝑘𝑋𝑥𝑘𝑖 (11)

We can introduce the momentum into back propagation with

the help of the following equations:

Δ𝑤𝑘ℎ𝑗=𝜂(𝑧𝑘ℎ)+𝛼Δ𝑤𝑘−1
ℎ ,

Δ𝑤𝑘𝑖ℎ=𝜂𝛿𝑘ℎ𝑥𝑘𝑖 +𝛼Δ𝑤𝑘−1
𝑖ℎ (12)

Back propagation propagates changes back because it can do

substantial good thing. The change in 𝑂𝑗 should be

proportional to (1−𝑂j) the slope of the threshold function, at

node 𝑘.The change to 𝑂𝑗 should also be proportional to 𝑊𝑗𝑘

the weight on the link connecting node 𝑗 to node 𝑘.

Summing over all nodes in layer 𝑘 = ∑𝑘𝑤(1−𝑂𝑘)𝛽𝑘.

At the output layer, the benefit has been given by the error at

the output node. The output layer 𝑧 will be benefited as

𝛽𝑧=𝑑𝑧−𝑜𝑧.

 Here a rate parameter 𝑟 has been introduced for controlling

the learning rate. So change in 𝑤𝑖𝑗 is proportional to 𝑟; that is,

Δ𝑤𝑖𝑗 =𝑟(1 − 𝑂𝑗)𝛽

𝑗 and 𝛽𝑗 =∑𝑘𝑊𝑗𝑘(1 −𝑂𝑘)𝛽𝑘 for nodes in hidden layers and

𝛽𝑧 =𝑑𝑧−𝑜𝑧 for nodes in the output layer. The output of the

network is compared with desired output; if it deviates from

desired output, the difference between actual output and the

desired output is propagated back from the output layer to

previous layer to modify the strength or weight of connection.

II. RESULTS FOR OHLANFIS BASED OOS EFFORT

ESTIMATION

Here the OHLANFIS model has been trained tested by

neuro-fuzzy based algorithm and their performance for the

best prediction model are evaluated and compared for training

and testing data sets separately. The RMSE performances of

the model both for training and testing datasets have been

plotted separately in Fig. 1 & Fig.2 and their corresponding

range of values (minimum and maximum) are summarized in

Table 1.

Fig. 1 Graphical plot of RMSE value variation during

training

Fig. 2 Graphical plot of RMSE value variation during

testing

TABLE 1: RANGE OF RMSE VAL. DURING TRAINING AND

TESTING PHASE

 RMSE Value

 Minimum Maximum

Training

datasets

0.4824 2.8096

Testing

datasets

186.41 188.41

Further Table 2 gives the RMSE values using both the normal

ANFIS and OHLANFIS techniques.

TABLE 2 : PERFORMANCE EVALUATION USING RMSE

CRITERIA

 Using Normal

ANFIS

Using

OHLANFIS

RMSE Val. 532.2147 112.638

From analysis of Fig. 1 & Fig. 2 and perusal of the data

given in tables 1 and 2 it is inferred that during training phase

(Fig.1), there is zig zag variation in the RMSE values, having

a minimum value of 0.4824 (at epoch 8) and a maximum

value of 2.8096 (epoch 3). Hence during training phase there

is initially a rise in the RMSE value and then there is a fall at

epoch no. 8, after which there is again a slight increase. On the

other hand, during testing phase (Fig.2) of OHLANFIS

training initially upto epoch 4 the RMSE value decreases and

reaches upto a minimum of 186.41 and then there is steep rise

in the RMSE value upto 10 epochs, where the maximum value

reached is 188.41. From the above analysis it can be inferred

that ANFIS has performed better during training phase than

testing phase but its overall RMSE value is 112.638. which

shows a marked improvement than those calculated in

COCOMO model i.e. 532.2147 (given above in Table 2).

III. CONCLUSION

The absolute values of Mean of Relative Error (MRE)

calculated both for normal ANFIS and OHLANFIS and their

comparative plot, both for training and testing are compared.

From the perusal of both the data and the graphical plot, it is

seen that during the training as well as testing phase of the

OHLANFIS model development, the absolute values of the

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 134-137

137 | P a g e

MRE are very less as compared to normal ANFIS model,

especially during training phase. Since Absolute MRE

computes the absolute percentage of error between the actual

and predicted effort for each referenced project, hence from

the above data analysis it can be inferred that the absolute

percentage of error between the actual and predicted effort

using OHLANFIS technique is far less than those using

normal ANFIS model. Thus, it is clear that proper selection of

influential radius which affects the cluster results directly in

ANFIS using substractive clustering rule extraction method,

has resulted in reduction of RMSE and MRE both for training

and testing data sets. Hence, it is seen that for small size

training data, OHLANFIS has outperformed normal ANFIS

model.

REFERENCES

[1] Mohammad Saber Iraji, Et.Al., (2012), “ Object Oriented

Software Effort Estimate With Adaptive Neuro Fuzzy Use Case

Size Point (Anfusp)”, I.J. Intelligent Systems And Applications,

6, 14-24.

[2] K.K.Aggarwal,Et.Al.,(2006),“Software Design Metrics For

Object-Oriented Software”, Journal Of Object Technology,

Vol. 6. No. 1, Pp. 121-138.

[3] Somesh Kumar, Manu Pratap Singh Et Al, “Hybrid

Evolutionary Techniques In Feed Forward Neural Network

With Distributed Error For Classification Of Handwritten Hindi

(Swars)”, Connection Science, 2013 Taylor & Francis Pp. 197-

215

[4] Yuming Zhou, Baowenxu, Hareton Leung, “On The Ability Of

Complexity Metrics To Predict Fault-Prone Classes In Object-

Oriented Systems”, The Journal Of Systems And Software

83(2010) 660-674, Elsevier.

[5] Alaa F. Sheta, Alaa Al-Afeef, “A Gp Effort Estimation Model

Utilizing Line Of Code And Methodology For Nasa Software

Projects” 978-1-4244-8136-1 Ieee Transaction, 2010 Pp. 284-

289.E. Praynlin, P. Latha, “Performance Analysis Of Software

Effort Estimation Models Using Neural Networks”, I.J.

Information Technology And Computer Science, 2013, 09,101-

107.

[6] SOMESH KUMAR, MANU PRATAP SINGH ET AL ,“HYBRID

EVOLUTIONARY TECHNIQUES IN FEED FORWARD NEURAL

NETWORK WITH DISTRIBUTED ERROR FOR CLASSIFICATION OF

HANDWRITTEN HINDI (SWARS)”,CONNECTION SCIENCE, 2013

TAYLOR & FRANCIS PP.197-215.

[7] CHANDRA SHEKHAR, RAGHURAJ SINGH, “TUNING OF COCOMO81

MODEL PARAMETERS FOR ESTIMATING SOFTWARE

DEVELOPMENT EFFORT USING GA FOR

[8] PROMISE PROJECT DATA SET”, INTERNATIONAL JOURNAL OF

COMPUTER APPLICATIONS (0975-8887) VOL. 90, NO. 1

FOUNDATION OF COMPUTER SCIENCE, NEW YORK, USA,2014 PP.

37-43.

[9] TAGHI M. KHOSHGOFTAAR, ROBERT M. SZABO, “IMPROVING

NEURAL NETWORK PREDICTIONS OF SOFTWARE QUALITY USING

PRINCIPAL COMPONENTS ANALYSIS”, IEEE WORLD CONGRESS

ON COMPUTATIONAL INTELLIGENCE, 1994 IEEE INTERNATIONAL

CONFERENCE VOLUME:5, PP. 3295-3300

DOI:10.1109/ICNN.1994.374764.

[10] PING YU, T. SYSTA, AND H. MULLER, “PREDICTING FAULT-

PRONENESS USING OO METRICS. AN INDUSTRIAL CASE STUDY”,

PROCEEDINGS. OF 6TH EUROPEAN CONFERENCE ON SOFTWARE

AINTENANCE AND REENGINEERING, 2002, PP. 99 –107, 2002.

