A new approach to routing in Disruption Tolerant Networks

Tadewos Somano
tadewos85@gmail.com

Abstract—The architecture of Delay or Disruption Tolerant Networks (DTN) is particularly intended for scenarios in which it is difficult to build infrastructure and for networks characterized by one or more of i) lack of end-to-end connectivity, ii) frequent channel errors, iii) limited transmission opportunities, iv) highly asymmetric links, v) low data rates (high delivery delay), vi) heterogeneous network environments and vii) high RTT. DTN architecture is assumed to be implemented in any data network type from legacy connected to challenged intermittently connected mobile adhoc networks (IC-MANETs), from underwater to deep space communication via its adaption layer called Convergence Layer (CL).

Despite the genericity of DTN architecture, DTN lacks well-defined generic routing protocol. There are some papers on routing approaches, especially on georouting, in DTN. These proposed georouting approaches, however, have one or more of the following limitations: simulation based, lack details, genericity, practical applicability and conformance to standard frameworks, and/or are packet based.

This paper discusses an approach to a routing based on information given by geographic receivers. Although implementation scope of this paper is DTN, the author assumes its possible adaptability to other MANETs and future adaptability to other types of data networks. Especially, Sensor networks, vehicular communications, Intelligent Transport Systems (ITS), etc. benefit much from this approach.

Index Terms—Delivery predictability, characteristic time, $P_{firstThreshold}$

I. INTRODUCTION

To date, the only routing protocol specified by DTN Research Group (RFC 6693) for DTN is PRoPHET. PRoPHET’s concept was invented by Avri Doria and Anders Lindgren for the SNC (Sami Network Connectivity) project in 2002. Assumption of PRoPHET is based on opportunistic or predicted networks. That is the movement of nodes can be predicted or at least can be guessed. Such scenarios are common in public transport system. In public transport, systems not only the direction of movement of nodes but also the time interval can be predicted or known. This means, if a node encounters another node several times, it has high probability of encountering the same node in the future.

The objective behind PRoPHET is to give optimum solution with respect to storage, delay, bandwidth and message delivery ratio when bandwidth and buffer are limited and nodes move in more over less predictable manner.

The fundamental parameter in PRoPHET is characteristic time, the expected time duration between encounters. Characteristic time gives expected time duration needed for traffic to be delivered to final destination. It is scenario dependent and is parameter on which PRoPHET’s configuration
Routing protocols and metric parameters

<table>
<thead>
<tr>
<th>Routing protocol</th>
<th>Metric parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected interface</td>
<td>Static route</td>
</tr>
<tr>
<td>EIGRP</td>
<td>bandwidth, delay, load, reliability</td>
</tr>
<tr>
<td>IGRP</td>
<td>bandwidth, delay, load, reliability</td>
</tr>
<tr>
<td>OSPF</td>
<td>cost</td>
</tr>
<tr>
<td>IS-IS</td>
<td>cost</td>
</tr>
<tr>
<td>RIP</td>
<td>Hop count</td>
</tr>
<tr>
<td>Unknown</td>
<td>Heading, D_xy, D_z, V_xy, V_z, k</td>
</tr>
</tbody>
</table>

TABLE I

ROUTING PROTOCOLS AND METRIC PARAMETERS

B. Georouting

There are some papers on georouting.

1) LARODLoDis: LARODLoDis is a routing protocol proposed for Intermittently Connected Mobile Ad Hoc Networks (IC-MANETs). LARODLoDis assumes forwarding of data on a per-packet basis. As DTN message is bundle based it can not be used in DTN directly. Moreover, its algorithms to utilize geographic information are not public.

2) geoDTN (Geographic Routing in Disruption Tolerant Networks): geoDTN considers only two (latitude and longitude) parameters out of 7 available geographic information.

3) Contention-based forwarding for mobile ad hoc networks: This is packet based and considers only two (latitude and longitude) parameters out of 7 available geographic information.

As we know from legacy routing protocols, the more metric parameters a routing protocol uses, the more reliable it is. In a similar fashion, if we are confined to latitude and longitude parameters in georouting, if a drone flies straight upward, we will not have information about the exact location of the drone. Rather, it is wrongly assumed that the drone stays at its initial position.

C. Methodology

The calculation and definition of equation is based on how GPS receiver gives geographic information. The GPS receiver gives geographic information as follows:

- **Longitude**: in degrees [minimum 0, maximum 180]
- **Latitude**: in degrees [minimum 0, maximum 90]
- **Altitude**: height from see level in ft or in m
- **Speed**: 2-dimensional speed (speed in latitude-longitude or x-y plane) in ft/s or m/s
- **Heading**: direction of movement in degrees with respect to North Pole (minimum 0, maximum 360)

\[s = \theta \times r \]

, where \(\theta \) is in radians.

Latitude Displacement

\[(\text{lat}_{\text{displmnt}}) = |\text{Lat}_1 - \text{Lat}_2|/360 \times \text{polar}_\text{radius} \times 2 \times \pi \]

\[= |\text{Lat}_1 - \text{Lat}_2| \times (\pi/180) \times \text{polar}_\text{radius} \]

Longitude Displacement

\[(\text{lon}_{\text{displmnt}}) = |\text{Lon}_1 - \text{Lon}_2|/360 \times \text{equa}_\text{rad} \times 2 \times \pi \times \cos((\text{Lat}_1 + \text{Lat}_2)/2) \]

\[= |\text{Lon}_1 - \text{Lon}_2| \times (\pi/180) \times (\text{equa}_\text{rad} \times \cos((\text{Lat}_1 + \text{Lat}_2)/2)) \]

Altitude if read in ft, in m=ft/3.2808. Altitude Displacement

\[\text{alt}_{\text{displmnt}} = \text{Alt}_1 - \text{Alt}_2 \]

Climb: vertical speed (speed in altitude or z direction) ft/s or m/s

Based on GPS information, the momentary relative speed and distance between 2 nodes can be calculated. For development and implementation, the IBR-DTN framework is used. However, the the mathematical equations used to utilize the geographic information can be used in other DTN architectures [JDTN, DTN2, Bytewella, NAC, ION, DTN Lite] and other packet based architectures. The message format for the exchange of geographic information and some terms like Delivery Predictability, \(P_{\text{firstthreshold}} \) are adapted from RFC 6693 for the sake of conformance.

![Fig. 1. DTN vs IBRDTN](image-url)
2) Equations to utilize geo information for GeoPRoPHET:

- Heading difference between two nodes = 180° or -180° when moving in opposite direction, and 0° when moving in the same direction.
- Let $V_1 = \text{speed}$ of node 1 in X-Y plane
- $\Theta_1 = \text{heading}$ of node 1
- $V_2 = \text{speed}$ of node 2 in X-Y plane
- $\Theta_2 = \text{heading}$ of node 2
- $\text{Climb}_1 = \text{climb}$ of node 1
- $\text{Climb}_2 = \text{climb}$ of node 2
- $V = \text{relative speed}$
- $D = \text{Displacement}$ between node 1 and node 2

Then the relative \(^4\) speed, v, is defined as:

$$v = \sqrt{v_1^2 + v_2^2 - 2 \cdot v_1 \cdot v_2 \cdot \cos(\theta)}$$

\(^4\)Relative speed in this context does not necessarily mean Physics\’s relative speed, rather equation that treats fairly so that the decision made is fair.

Fig. 2. Cosine function

Fig. 3. Negative of cosine function

Fig. 4. $V = \sqrt{v_1^2 + v_2^2 - 2 \cdot v_1 \cdot v_2 \cdot \cos(\theta)}$ for $v_1 = 5$ and $v_2 = 10$

$$v = \sqrt{v_1^2 + v_2^2 - 2 \cdot v_1 \cdot v_2 \cdot \cos(\theta) + \text{climb}^2} \quad (7)$$

$$\quad [\text{if } 0^\circ \leq \theta < 180^\circ]$$

$$v = \sqrt{v_1^2 + v_2^2 - 2 \cdot v_1 \cdot v_2 \cdot |\cos(\theta)| + \text{climb}^2} \quad (8)$$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GeoPRoPHET</th>
<th>remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>β</td>
<td>Transitivity factor ([0,1])</td>
</tr>
<tr>
<td>γ</td>
<td>γ</td>
<td>Aging factor ([0,1])</td>
</tr>
<tr>
<td>δ</td>
<td>δ</td>
<td>History of encounter factor</td>
</tr>
<tr>
<td>$P_{\text{encounter_first}}$</td>
<td>$P_{\text{threshold}}$</td>
<td>Min value of deliverability</td>
</tr>
<tr>
<td>$P_{\text{encounter_max}}$</td>
<td>k</td>
<td>Number of time units</td>
</tr>
</tbody>
</table>

TABLE II

PROTOCOL PARAMETERS OF GEOPROPHET VS PRoPHET

[if $180^\circ < \theta$ or $\theta < -180^\circ$]

The condition when nodes move towards each other is not yet treated by the above equations. As the theta is 180° or -180°, it is treated as if the nodes are moving away. But the remedy is that the distance decreases and eventually becomes 0 when the nodes meet and DP_{xy} becomes high enough.

$$D = \sqrt{(\text{lat}_{\text{displmnt}})^2 + (\text{long}_{\text{displmnt}})^2 + (\text{Alt}_{\text{displmnt}})^2} \quad (9)$$

D. GeoPRoPHET

1) Metric Parameters: The motivation behind GeoPRoPHET is to have optimum routing protocol which is not resource (bandwidth, power and memory) exhaustive, yet with expectation of random movement of nodes.

$$DP_{ab} = \frac{1}{D_{ab} + 1} + \frac{1}{S_{ab} + 1} \quad (10)$$

where DP_{ab}, D_{ab} and S_{ab} are delivery predictability, distance and relative speed between nodes a and b respectively.

DP_{ab} is preferred to $DP_{ab} = \frac{1}{D_{ab} + S_{ab} + 1}$ or $DP_{ab} = \frac{1}{D_{ab} + S_{ab} + 1}$ because its gradient is low and changes slowly.

$$DP_{ac} = \frac{1}{D_{ac} + 1} + \frac{1}{S_{ac} + 1} \cdot \gamma^k \cdot \beta \quad (11)$$

where k is number of time units elapsed since b encountered c.

$$P_{\text{first_threshold}} = \frac{1}{\text{max._radio_range}} + \frac{1}{\text{max._speed}} \quad (12)$$

$$DP_{xy} = DP_{xy} \cdot \gamma^k \quad (13)$$

For GeoPRoPHET, $P_{\text{first_threshold}}$ is not fixed value unlike 0.1 in PRoPHET. $P_{\text{first_threshold}}$, γ in GeoPRoPHET, depends on relative distance and speed between two nodes as the delivery predictability is dependent on relative speed and distance. It depends on the radio range used in scenario which, in turn, depends on the power of transmission and transmission range. Therefore, delivery predictability is a function of distance and speed. To reduce data forwarded, delivery predictabilities smaller than $P_{\text{first_threshold}}$ is discarded. Care must be taken to ensure $P_{\text{first_threshold}}$ is less than any delivery predictability value which may exist in the network.
frequency and maximum expected relative speed between nodes. Imagine two nodes having distance 5m and relative speed 80km/h(22.2m/s) and the radio range used is 1km. At this moment(k=0) \(P_{\text{first threshold}} = 0.046045045045045 \), which is much less than 0.1. But if we use \(P_{\text{first threshold}} = 0.1 \) (PRoPHET’s approach), the \(P_{\text{first threshold}} \) can not depict the real situation. We have two approaches to use \(P_{\text{first threshold}} \) in GeoPRoPHET:

1) Using

\[
P_{\text{first threshold}} = \frac{1}{\text{max radio range}} + \frac{1}{\text{max expected relative speed}}
\]

as it is. But this value becomes very small, especially in military scenario where low frequency and high power may be used. Due to approximations, it may be difficult to distinguish between two distinct values.

2) Keeping \(P_{\text{first threshold}} \) and multiplying \(\frac{1}{D_{T}T} + \frac{1}{S_{T}T} \) by \(m \) \(\frac{1}{\text{max radio range} + \text{max expected relative speed}} \), where \(m \) is a constant dependent on:

i) The amount of available storage for RIB\(^6\).

ii) The number of network elements.

iii) The amount of maximum time we want an entry for a node to stay in RIB.

In this case the values become large and coarse enough to be distinct. The author proposes the second approach.

Thus, even if the skeleton of PRoPHET used, the philosophy of GeoPRoPHET is different. In GeoPRoPHET, there are no parameters history of encounter, \(\delta \) and probability of encounter. In general GeoPRoPHET has the following advantages over PRoPHET:

1) It does not matter whether the encounter of nodes is opportunistic, deterministic or random.

2) It is not obligatory to reflect network behavior in configurations of parameters.

In PRoPHET, configuration of constants should reflect the behavior of the network e.g. if we set characteristic time lower value than nodes are expected to encounter, delivery predictability values decay soon and there may be no entries for many of nodes. This is because the aging factor is higher than the update factor that the delivery predictability (DP) age out and become less than \(P_{\text{first threshold}} \). Even though PRoPHET specification mentions that it can work in random environments, no simulation or implementation results are mentioned as backup.

3) In PRoPHET, malicious nodes may have configuration to seem better forwarder and to disrupt delivery of bundles. But in GeoPRoPHET as delivery predictability is not exchanged and determined only locally, a malicious node can not produce fake geo information continuously which may make it seem better candidate to forward bundles.

If we exchange delivery predictability in GeoPRoPHET, as depicted in the following figure, B cannot tell right information about C to A.

\(^6\)Routing Information Base
F. Limitations in real world scenarios

Factors that can degrade the GPS signal and thus affect accuracy include the following:

1) Ionosphere and troposphere delays: The satellite signal slows as it passes through the atmosphere. The GPS system uses a built-in model that calculates an average amount of delay to partially correct for this type of error.

2) Signal multi path: This occurs when the GPS signal is reflected off objects such as tall buildings or large rock surfaces before it reaches the receiver. This increases the travel time of the signal, thereby causing errors.

3) Receiver clock errors: Built in clock of receiver is not as accurate as the atomic clocks onboard the GPS satellites. Therefore, it may have very slight timing errors.

4) Orbital errors: Also known as ephemeris errors, these are inaccuracies of the satellites reported location.

5) Number of satellites visible: The more satellites a GPS receiver can see, the better the accuracy.

6) Buildings, terrain, electronic interference, or sometimes even dense foliage can block signal reception, causing position errors or possibly no position reading at all. GPS units typically will not work indoors, underwater or underground.

7) Satellite geometry/shading: This refers to the relative position of the satellites at any given time. Ideal satellite geometry exists when the satellites are located at wide angles relative to each other; whereas poor geometry results when the satellites are located in a line or in a tight grouping.

8) Intentional degradation of the satellite signal: Selective Availability (SA) is an intentional degradation of the signal once imposed by the U.S. DoD. SA was intended to prevent military adversaries from using the highly accurate GPS signals. The government turned off SA in May 2000, which significantly improved the accuracy of civilian GPS receivers.
ACKNOWLEDGMENT

The author would like to thank:
1. TNO, www.tno.nl
2. University of Brescia, Department of Information Engineering, www.unibs.it
REFERENCES

[1] TNO, THALES, SAAB, TEKEVER, ALTO UNIVERSITY, WIL, EUR- RECOM MIDNET D6.2a Interim report on standardization activities

[2] TNO, THALES, SAAB, TEKEVER, ALTO UNIVERSITY, WIL, EUR- RECOM MIDNET D5.1a DTN Infrastructure Security Analysis and Requirements

[4] TNO, THALES, SAAB, TEKEVER, ALTO UNIVERSITY, WIL, EUR-RECOM MIDNET D2.3 MIDNET architectural model description

[12] Kevin Fall, Senior Member, IEEE, and Stephen Farrell Assessing and improving an approach to delay-tolerant networking Research Fellow, Centre for Communication Systems Research at the University of Surrey

[14] Sali Iftikhar, Robert C. Durst The MITRE Corporation McLean, VA DISTRIBUTION TOLERANT NETWORKING FOR MARINE CORPS CONDOR

[15] Thomas Jonson, Jonah Pezeshki, Victor Chao, Kristofer Smith, James Fazio Booz Allen Hamilton Herndon, VA APPLICATION OF DELAY TOLERANT NETWORKING (DTN) IN AIRBORNE NETWORKS

[20] Loren Clare, Scott Burleigh Jet Propulsion Laboratory California Institute of Technology, Keith Scott MITRE Corporation Endpoint Naming for Space Delay/Disruption Tolerant Networking

[22] JJ Agila Bitsch Link, Daniel Schmitz, Klaus Wehrle Communication and Distributed Systems RWTH Aachen University, Germany geoDTN: Geographic Routing in Disruption Tolerant Networks

Tadewos Somano obtained an MSc in Communication Technologies and Multimedia from University of Brescia in 2015 and BSc in Electrical Engineering from Jimma university in 2007 and is CCNA certified. He has, so far, a job experience in TNO and EthioTelecom. Tadewoss is interested in ICT, embedded systems, IoT, machine vision, signal/image, video and audio processing and applications, software development (C++, C, Matlab, Python, Java), machine learning, tech news and journals.