CONTINUOUS P-FRAMES AND THEIR PERTURBATION IN BANACH SPACES

E. Osgooei
Department of Sciences, Urmia University of Technology, Urmia, Iran

Abstract — Replacing the sequence of vectors with a net indexed by an ordered set where the set is endowed with a measure space, we obtain a generalization of discrete frames which is called continuous p-frames. The problem of combining the synthesis and analysis operators of these frames is solved in this paper. We also prove that a perturbation of a weakly measurable function \(G \) of a cp-frame \(F \) is again a cp-frame when there is a small enough gap between \(F \) and \(G \).

Index Terms — Continuous p-frames, Duality mapping, Perturbation

I. INTRODUCTION

A discrete frame is a countable family of elements in a separable Hilbert space which allows stable not necessarily unique decomposition of arbitrary elements into expansions of the frame elements. This concept was generalized by Ali, Antoine and Gazeau [1], to families indexed by an ordered set endowed with a Radon measure. These frames are known as continuous frames. For more studies about frame theory and continuous frames we refer to [1, 3, 4, 5]. We observe that various generalizations of frames have been proposed recently. Throughout this paper, \((\Omega, \mu)\) will be a measure space and \(\mu \) is a positive, \(\sigma \)-finite measure. \(X \) is a Banach space with dual \(X^* \). We choose \(1 < p < \infty \), and \(q \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \). The normed dual \(X^* \) of a Banach space \(X \) is itself a Banach space and hence has a normed dual of its own, denoted by \(X^{**} \). The mapping \(\Lambda_x : X \rightarrow X^{**} \), \(x \mapsto \Lambda_x x \) defines a unique \(\Lambda_x x \in X^{**} \) by the equation, \(\langle x, x' \rangle = \langle x', \Lambda_x x \rangle \) for each \(x' \in X^* \) and \(\| \Lambda_x x \| = \| x \| \) for each \(x \in X \). So \(\Lambda_x : X \rightarrow X^{**} \) is an isometric isomorphism of \(X \) onto a closed subspace of \(X^{**} \). If \(X \) is a reflexive Banach space then \(\Lambda_x : X \rightarrow X^{**} \) is an isometric isomorphism of \(X \) onto \(X^{**} \).

A. 2 PRELIMINARIES

Definition 2.1. A countable family \(\{ g_j \}_{j=1}^\infty \subset X^* \) is a p-frame for \(X \) if there exist constants \(A, B > 0 \) such that

\[
\left(\sum_{i=1}^{\infty} \| g_i(f) \|^p \right)^{\frac{1}{p}} \leq A \| f \|, \quad f \in X.
\]

\(\{ g_j \}_{j=1}^\infty \) is a p-Bessel sequence if at least the upper p-frame condition is satisfied.

Definition 2.2. Let \(H \) be a complex Hilbert space and \((\Omega, \mu) \) be a measure space. The mapping \(F : \Omega \rightarrow H \) is called a continuous frame for \(H \) with respect to \((\Omega, \mu)\), if:

(i) \(F \) is weakly measurable, i.e., for each \(f \in H \), \(\omega \mapsto \langle f, F(\omega) \rangle \) is a measurable function on \(\Omega \),

(ii) There exist constants \(A, B > 0 \) such that

\[
A \| f \|^p \leq \int_{\Omega} \| \langle f, F(\omega) \rangle \|^p d\mu(\omega) \leq B \| f \|^p, \quad f \in H.
\]
\[K^\psi(\phi) = \int \psi(\omega) \phi(\omega) d\mu(\omega) \text{ for all } \psi \in L^p(\Omega, \mu) \]
and \(\phi \in L^q(\Omega, \mu) \).

We can define the isometrical isomorphism
\[K^\psi(\phi) = (K^\psi)^* \Lambda_q : L^q(\Omega, \mu) \rightarrow L^p(\Omega, \mu)^* \]
for which \(\Lambda_q \) is the isometrical isomorphism of \(L^q(\Omega, \mu) \) onto \(L^p(\Omega, \mu)^* \).

Lemma 2.5. [7]. Given a bounded operator \(U : X \rightarrow Y \), the adjoint \(U^* : Y^* \rightarrow X^* \) is surjective if and only if \(U \) has a bounded inverse on its range \(R(U) \).

B. 3 CP-FRAMES

Definition 3.1. The mapping \(F : \Omega \rightarrow X^* \) is called a continuous p-frame or a cp-frame for \(X \) with respect to \((\Omega, \mu)\) if:

(i) \(F \) is weakly measurable, i.e., for each \(x \in X \), \(w \rightarrow (x,F(\omega)) = F(\omega)(x) \) is measurable on \(\Omega \).

(ii) There exist positive constants \(A \) and \(B \) such that

\[A \| x \| \leq (\int \| x,F(\omega) \|^p d\mu(\omega))^{\frac{1}{p}} \leq B \| x \| \quad (3.1) \]

The constants \(A \) and \(B \) are called the lower and upper cp-frame bounds, respectively. \(F \) is called a tight cp-frame if \(A = B \), and a Parseval cp-frame if \(A \) and \(B \) can be chosen such that \(A = B = 1 \). \(F \) is called a cp-Bessel mapping for \(X \) with respect to \((\Omega, \mu)\), if (i) and the second inequality in (3.1) holds. In this case \(B \) is called cp-Bessel constant.

If in the definition of a cp-frame, the measure space \(\Omega = \mathbb{N} \) and \(\mu \) be the counting measure, then our cp-frame will be a p-frame and so we expect that some properties of p-frames can be satisfied in cp-frames.

Throughout this paper, we simply say \(F \) is a cp-frame for \(X \) and \(F \) is a cp-Bessel mapping for \(X \), instead of \(F \) is a cp-frame for \(X \) with respect to \((\Omega, \mu)\) and \(F \) is a cp-Bessel mapping for \(X \) with respect to \((\Omega, \mu)\), respectively.

Our study of a cp-frame is based on analysis of two operators \(U_F : X \rightarrow L^p(\Omega, \mu) \), defined by

\[U_F x(\omega) = \langle x,F(\omega) \rangle, x \in X, \omega \in \Omega \quad (3.2) \]

and \(T_F^* : L^q(\Omega, \mu) \rightarrow X^* \) which is weakly defined by

\[T_F^* \phi(x) = \langle x,T_F \phi \rangle = \int \phi(\omega) \langle x,F(\omega) \rangle d\mu(\omega), \phi \in L^q(\Omega, \mu), x \in X \quad (3.3) \]

It is clear that if \(F \) is a cp-Bessel mapping, then \(U_F \) is well-defined and bounded operator. \(U_F \) is called the analysis and \(T_F^* \) is called the synthesis operator of \(F \).

Lemma 3.2. Let \(F \) be a cp-frame for \(X \). Then the operator \(U_F : X \rightarrow L^p(\Omega, \mu) \), given by (3.2), has a closed range and \(X \) is reflexive.

Proof. It is easy to verify that \(U_F \) has a closed range. By the cp-frame condition, \(X \) is isomorphic to \(R(U_F) \), but \(R(U_F) \) is reflexive because it is a closed subspace of the reflexive space \(L^p(\Omega, \mu) \) and therefore \(X \) is reflexive.

Theorem 3.3 Let \(F : \Omega \rightarrow X^* \) be a cp-Bessel mapping for \(X \) with Bessel bound \(B \). Then the operator \(T_F^* : L^q(\Omega, \mu) \rightarrow X^* \), weakly defined in (3.3), is well-defined, linear and \(\| T_F^* \| \leq B \).

Lemma 3.4. Let \(F : \Omega \rightarrow X^* \) be a cp-Bessel mapping for \(X \). Then:

(i) \(U_F^* = T_F(K^\psi)^{-1} \).

(ii) If \(X \) is reflexive, then \(T_F^* = K^\psi U_F^* A_X^{-1} \).

Theorem 3.5 Let \(X \) be a reflexive Banach space and \(F : \Omega \rightarrow X^* \) be weakly measurable. If the mapping \(T_F^* : L^q(\Omega, \mu) \rightarrow X^* \) weakly defined by

\[\langle x,T_F \phi \rangle = \int \phi(\omega) \langle x,F(\omega) \rangle d\mu(\omega), \phi \in L^q(\Omega, \mu), x \in X \]

is a bounded operator and \(\| T_F \| \leq B \), then \(F \) is a cp-Bessel mapping for \(X \).
Proof. Since T_F is well-defined and bounded, for all $f \in X^*$ and $\varphi \in L^p(\Omega, \mu)$, we have
\[
\langle \varphi, T_F^* f \rangle = \langle T_F \varphi, f \rangle = \int_{\Omega} \varphi(\omega) \langle \Lambda_X^{-1} f, F(\omega) \rangle d\mu(\omega).
\]
For each $f \in X^*$, we define $\psi_f : \Omega \to C, \omega \to \langle \Lambda_X^{-1} f, F(\omega) \rangle$. Since ψ_f is measurable and for each $\varphi \in L^p(\Omega, \mu)$,
\[
\left| \int_{\Omega} \varphi(\omega) \psi_f(\omega) d\mu(\omega) \right| < \infty,
\]
$\psi_f \in L^p(\Omega, \mu)$, by Theorem 2.4, we have
\[
\psi_f(\omega) = (K^p)^{-1}\langle T_F^* f, \omega \rangle, \omega \in \Omega.
\]
Hence for each $x \in X$, \[
\frac{1}{\Omega} \left| \langle x, F(\omega) \rangle \right|^p d\mu(\omega) = \left\| (K^p)^{-1} T_F^* \Lambda_X x \right\| = \left\| T_F^* \Lambda_X x \right\| \leq \left\| T_F^* \right\| \left\| x \right\|.
\]
\[
\left\| T_F^* \right\| \left\| x \right\| \leq B \left\| x \right\|.
\]
Theorem 3.6. Let X be a reflexive Banach space and $F: \Omega \to X^*$ be a weakly measurable mapping. Then F is a cp-frame for X if and only if T_F is a well-defined and bounded operator of $L^p(\Omega, \mu)$ onto X^*. In this case, the frame bounds are \[
\left\| T_F^* \right\|^{-1} \text{ and } \left\| T_F \right\|.
\]
Proof. By Theorem 3.3 and 3.5, the upper cp-frame condition satisfies if and only if T_F is well-defined and bounded operator of $L^p(\Omega, \mu)$ onto X^*. Now suppose that F is a cp-frame for X. Then U_F has a bounded inverse on its range $R(U_F)$ and by Lemma 2.5, U_F^* is surjective and therefore T_F is a well-defined and bounded operator of $L^p(\Omega, \mu)$ onto X^*. By Lemma 3.4, for each $x \in X$,
\[
\left\| U_F x \right\| = \left\| (K^p)^{-1} T_F^* \Lambda_X x \right\| = \left\| T_F^* \Lambda_X x \right\| \leq \left\| T_F \right\| \left\| x \right\|.
\]
On the other hand since T_F is bounded and surjective, T_F^* is one to one, hence T_F^* has a bounded inverse on $R(T_F^*)$. So by Lemma 3.4, for each $x \in X$ we have
\[
\left\| x \right\| = \left\| \Lambda_X x \right\| = \left\| (T_F^*)^{-1} T_F^* \Lambda_X x \right\| \leq \left\| (T_F^*)^{-1} \right\| \left\| U_F x \right\|.
\]
C. 4 CP-Frame Mapping and Its Invertibility
In this section, in order to make a cp-frame mapping, we need a mapping from the Banach space $L^p(\Omega, \mu)$ into its dual space, $L^q(\Omega, \mu)$.

Definition 4.1. The mapping ϕ_x of X into the set of subsets of X^*, defined by
\[
\phi_x(x) = \{ x^* \in X^* : x^*(x) = \left\| x \right\|^p, \left\| x^* \right\| = \left\| x \right\| \}
\]
is called the duality mapping on X.

By the Hahn-Banach theorem, for each $x \in X$, $\phi_x(x)$ is nonempty and $\phi_X(0) = 0$. In general the duality mapping is set-valued, but for certain spaces it is single-valued and such spaces are called smooth.

Definition 4.2. Let $F: \Omega \to X^*$ be a cp-frame for X. The bounded mapping $S_F: X \to X^*$ defined by
\[
S_F = T_F (K^p)^{-1} \phi_L(\Omega, \mu) U_F
\]
is called a cp-frame mapping of F.

Proposition 4.3. Suppose that $F: \Omega \to X^*$ is a cp-frame for X with frame bounds A and B. Then S_F has the following properties:

(i) $S_F = U_F^* \phi_L(\Omega, \mu) U_F$.

(ii) $A^2 \left\| x \right\|^2 \leq S_F(x) \leq B^2 \left\| x \right\|^2, x \in X$.

Definition 4.4. A mapping $[\ldots]$ from $X \times X$ into R is said to be a semi-inner product on X if it has these properties:

(i) $[x, x] \geq 0$ for all $x \in X$ and $[x, x] = 0$ if $x = 0$.

(ii) $[\alpha x + \beta y, z] = \alpha [x, z] + \beta [y, z]$ for all $\alpha, \beta \in R$ and for all $x, y, z \in X$.

(iii) $[x, y]^2 \leq [x, x] [y, y]$ for all $x, y \in X$.

The element $x \in X$ is called (Giles) orthogonal to the element $y \in X$ (denoted by $x \perp y$), if $[x, y] = 0$. If M is a linear subspace of X, the notation M^\perp is used to show the orthogonal complement of M in Giles sense, i.e. $M^\perp = \{ x \in X; x \perp y, y \in M \}$.
Remark 4.5. Let $F: \Omega \rightarrow X^*$ be a cp-frame for X. Suppose that $\text{Ker}(T_F)$ and $(\text{Ker}(T_F))^\perp$ are topologically complementary in $L^0(\Omega, \mu)$, then clearly the operator $T_F|_{(\text{Ker}(T_F))^\perp}$ is invertible and $T_F^\perp = (T_F|_{(\text{Ker}(T_F))^\perp})^{-1}$ is a bounded right inverse of T_F.

Definition 4.6. Let $F: \Omega \rightarrow X^*$ be a cp-frame for X. Suppose that $\text{Ker}(T_F)$ and $(\text{Ker}(T_F))^\perp$ are topologically complementary in $L^0(\Omega, \mu)$, we define the mapping $K:X^* \rightarrow X$ by $K = \Lambda_{X}(T_F^\perp \phi_{L^0(\Omega, \mu)})T_F^\perp$.

Lemma 4.7. Let $F: \Omega \rightarrow X^*$ be a cp-frame for X. Suppose that $\text{Ker}(T_F)$ and $(\text{Ker}(T_F))^\perp$ are topologically complementary in $L^0(\Omega, \mu)$, then:

(i) $K(g)(\omega) \geq \frac{1}{B^2} \|g\|_{L^0(\Omega, \mu)}^2$, where B denotes an upper cp-frame bound for F.

Moreover, when the operator $T_F^\perp T_F$ is adjoint abelian, the following assertions hold:

(ii) S_F is invertible and $S_F^\perp = K$.

(iii) $S_F^\perp = U_F^\perp (K^p)^{-1} \phi_{L^0(\Omega, \mu)} T_F^\perp$.

D.5 DUALS OF CP-BESSEL MAPPINGS

In this section, X is an infinite dimensional, reflexive Banach space.

Definition 5.1. [6]. A sequence $(e_i)_{i=1}^\infty$ in X is called a Schauder basis of X, if for each $x \in X$ there is a unique sequence of scalars $(a_i)_{i=1}^\infty$, called the coordinates of x, such that $x = \sum_{i=1}^\infty a_i e_i$.

Let $(e_i)_{i=1}^\infty$ be a Schauder basis of a Banach space X.

For $j \in N$ and $x = \sum_{i=1}^\infty a_i e_i$, denote $f_j(x) = a_j$. Using Theorem 6.5 in [6], $f_j \in X^*$. The functionals $(f_j)_{i=1}^\infty$ are called the associated biorthogonal functionals (coordinate functionals) to $(e_i)_{i=1}^\infty$ and for each $x \in X$,

we have $x = \sum_{i=1}^\infty f_j(x) e_i$.

We will denote the biorthogonal functionals (f_j) by (e_i^*), and say that (e_i, e_i^*) is a Schauder basis of X.

Theorem 5.2 Let $F: \Omega \rightarrow X^*$ be a cp-Bessel mapping for X and $G: \Omega \rightarrow X^{**}$ be a cq-Bessel mapping for X^*. Then the following assertions are equivalent:

(i) For each $x \in X$, $x = \Lambda^p_{X}(T_G^\perp T_F^\perp \phi_{L^0(\Omega, \mu)}) T_F^\perp x$.

(ii) For each $g \in X^*$, $g = T_F^\perp (K^p)^{-1}T_G^\perp (\Lambda^p_{X})^\perp T_F^\perp g$.

(iii) For each $x \in X$ and $g \in X^*$, $(x, g) = \int (\langle x, F(\omega) \rangle | g, G(\omega) \rangle d\mu(\omega))$.

(iv) For each Schauder basis (e_i, e_i^*) of X.

Error!

Definition 5.3. Let $F: \Omega \rightarrow X^*$ be a cp-Bessel mapping for X and $G: \Omega \rightarrow X^{**}$ be a cq-Bessel mapping for X^*. We say that (F, G) is a c-dual pair, if one of the assertions of Theorem 5.25, satisfies.

In this case F is called a cp-dual of G and by Theorem 5.2, we can say that G is a cq-dual of F.

Definition 5.4. Let $F: \Omega \rightarrow X^*$ be a cp-frame for X. We say that F is independent, provident that for each measurable function $\phi: \Omega \rightarrow C$ and $x \in X$,

$\int \langle x, F(\omega) \rangle | \phi(\omega) \rangle d\mu(\omega) = 0$.

implies that $\phi = 0$.

Theorem 5.5 Let $F: \Omega \rightarrow X^*$ be a cp-frame for X and $\mu(E) \geq k > 0$, for each measurable set E, except $E = \varnothing$. Then, we have the following assertions:

(i) If F is an independent cp-frame for X, then there exists a unique cq-frame, $G: \Omega \rightarrow X^{**}$ for X^*, such that (F, G) is a c-dual pair.

(ii) If Ker(T_F) and $(\text{Ker}(T_F))^{\perp}$ are topologically complementary in $L^0(\Omega, \mu)$, then there exists a cq-
frame $G: \Omega \rightarrow X^{**}$ for X, such that (F,G) is a c-dual pair.

E. 6 PERTURBATION OF CP-FRAMES

Perturbation of discrete frames has been discussed in [2]. The proof of the following theorem is based on the following lemma, which was proved in [2].

Lemma 6.1. Let U be a linear operator on a Banach space X and assume that there exist $\lambda_1, \lambda_2 \in (0,1)$ such that for each $x \in X$,

$$|x - Ux| \leq \lambda_1 |x| + \lambda_2 |Ux|.$$

Then U is bounded and invertible. Moreover for each $x \in X$,

$$\frac{1 - \lambda_1}{1 + \lambda_2} |x| \leq |Ux| \leq \frac{1 + \lambda_1}{1 - \lambda_2} |x|,$$

and

$$\frac{1 - \lambda_2}{1 + \lambda_1} |x| \leq |U^{-1}x| \leq \frac{1 + \lambda_2}{1 - \lambda_1} |x|.$$

Theorem 6.2 Let F be an independent cp-frame for X and $\mu(E) \geq k > 0$, for each measurable set E, except $E = \emptyset$. Suppose that $G: \Omega \rightarrow X^*$ is weakly measurable and assume that there exist constants $\lambda_1, \lambda_2, \gamma \geq 0$ such that $\max(\lambda_1 + \frac{\gamma}{A}, \lambda_2) < 1$. Let for all $\phi \in L^q(\Omega, \mu)$ and x in the unit sphere of X,

$$\left| \int_{\Omega} \phi(\omega) \langle x, F(\omega) - G(\omega) \rangle d\mu(\omega) \right| \leq \lambda \left(\int_{\Omega} \phi(\omega) \langle x, F(\omega) \rangle d\mu(\omega) \right) + \lambda \left(\int_{\Omega} \phi(\omega) \langle x, G(\omega) \rangle d\mu(\omega) \right) + \lambda \left(\int_{\Omega} \phi(\omega) \langle x, G(\omega) \rangle d\mu(\omega) \right).$$

Then $G: \Omega \rightarrow X^*$ is a cp-frame for X with bounds

$$\frac{1 - (\lambda_1 + \frac{\gamma}{A})}{1 + \lambda_1} \text{ and } \frac{1 + \lambda_2 + \frac{\gamma}{B}}{1 - \lambda_2},$$

where A and B are the frame bounds of F.

REFERENCES