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Abstract—This study analyzed the return series of Chinese 

stock market by using GARCH model without sudden changes 

and re-examined the impact of sudden changes in volatility 

persistence in Chinese stock market by using GARCH model 

with sudden changes. We detected sudden changes in volatility by 

using the iterated cumulative sums of squares (ICSS) algorithm. 

Our findings indicated that the investor psychology was still 

green in Chinese stock market and the Chinese stock market still 

had high speculation and risk. In addition, we also found that the 

ignorance of sudden changes in volatility would overestimate 

volatility persistence in stock markets. 

Index Terms—Sudden changes, volatility persistence, ICSS 

algorithm, GARCH model, Dummy Variable. 

 

I. INTRODUCTION  

In financial market, the characteristics of time series data is 

often unstable and the volatility means the uncertainty of 

returns on assets, which is often used to measure the risk of 

assets. Specifically speaking, larger fluctuations will be 

relatively gathered in a certain time period, while smaller 

fluctuations will be relatively gathered in another time period. 

Many economists[1-2] have established a variety of models to 

predict volatility, especially the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) model with the time-

varying feature which is the most commonly used volatility 

model in this field. Because the GARCH model can effectively 

capture the phenomenon of fluctuations aggregation and 

heteroskedasticity characteristics in volatility of return on 

assets.      

Accordingly, we also used Auto-regressive and Moving 

Average (ARMA) model and conducted some tests to estimate 

the return series to confirm whether there was ARCH effect or 

not. We detected that the volatility of return series of Shanghai 

Composite Index had the characteristic of cluster, which meant 

that the volatility of the stock market in the past had an effect 

on the volatility in the following time. Besides, this phenomena 

can be explained by trading behavior which is to seriously 

chase price. It is obvious that the investor psychology is 

immature in Chinese stock market. Certainly, this situation is 

fit for the national conditions of China as it is only thirty four 

years for Chinese stock market, so the mechanism also is 

seriously unsound.  

Then, we adopted the GARCH model to explain this return 

serious. We found that the historical volatility information had 

a persistent impact on volatility of stock returns, although the 

impact was hard to eliminate in short term, which also revealed 

that Chinese stock market was featured with high speculation 

and risk. 

As corresponding to domestic and global economic events, 

the infrequent sudden changes or regime shifts have impact on 

the volatility of stock returns. Because the sudden changes in 

economy and its fundamentals, are important components of 

managing market risk and uncertainty, building investment 

portfolios, and pricing derivative securities[3].Therefore, it is 

important to estimate the impact of sudden changes in volatility. 

Nevertheless, the GARCH model does no good for detecting 

sudden changes. In other words, it can’t make a relative good 

estimation on volatility persistence[4]. In order to overcome 

this problem, Inclán and Tiao[5] designed a method, called 

iterated cumulative sums of squares (ICSS) algorithm, to 

identify the time points of sudden changes. On the top of this, 

many economists[6-9] adopted the generalized autoregressive 

conditional heteroskedasticity (GARCH) class models to 

document the effects of sudden changes on volatility. As a 

result, these studies all supported the notion that to ignore 

sudden changes would overestimate the persistence of volatility 

in stock markets.  

 This study adopted the GARCH model to evaluate the 

return series and re-examined the impact of sudden changes on 

volatility persistence in shanghai composite index, or SCI for 

short. The principal objectives of this study mainly consist of 

four parts. First of all, to estimate the return series to confirm 

whether there is ARCH effect or not through the ARMA model 

and some tests. Secondly, to explain this return serious through 

the GARCH model. Thirdly, to discover the points of sudden 

changes through the ICSS algorithm. The fourth one is to 

examine whether the inclusion of sudden changes in the 

GARCH model can reduce the coefficients of volatility 

persistence or not. 

The reminder of the paper is organized as follows: Part 2 is 

about the introduction of ICSS algorithm and GARCH model; 

Part 3 is about the description of the characteristics of the 

sample date; Part 4 is about the presentation of the results of 

the empirical study; and Part 5 is about some concluding 

remarks. 

II. METHODOLOGY  

Following Inclán and Tiao[5], this study used ICSS 

algorithm to identify sudden changes in volatility, and then 

took the points of sudden changes into the univariate 

GARCH(1,1) model to estimate as dummy variable.Besides, 

we also estimated the GARCH(1,1) model without sudden 

change dummies. Therefore, this part was mainly made of three 

sections as follows. 

1. ICSS algorithm. 

The ICSS algorithm was used to detect discrete sub-periods 

of changing stock return volatility. Popularly speaking, the 

ICSS algorithm was to identify the points of sudden changes in 

variance of a time series. 

It supposes that when a sudden change occurs as a result of 

a sequence of financial events, the variance of a time series will 

from stationary state to unstable state; and then the variance 

comes back to stationary state until another market shock 

happens. This process is repeated over time, generating a time 

series of observations with an unknown number of changes in 

variance. 
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Let { } denote an independent time series with a zero 

mean and an unconditional variance marked . The variance 

is given by , i=0,1,2,..., , where  is the total number of 

variance changes in T observations, and 

1< < < <…< <T are the change points. The variance 

over  intervals is defined as follows: 

 

                                      (1) 

 

A cumulative sum of squares is utilized to determine the 

number of changes in variance and the point in time at which 

each variance shift occurs. The cumulative sum of squares from 

the first observation to the  point in time is expressed as 

follows: 

 

,where  k= 1,…,T                                             (2) 

 

Define the statistic  as follows: 

 

,  where                               

(3)  

and is the sum of squared residuals from the whole sample 

period. Note that if no changes in variance occur, the 

statistic will oscillate around zero (if  is plotted against 

k , it will resemble a horizontal line). However, if one or more 

changes in variance occur, then statistic values drift up or 

down from zero. Significant changes in variance are detected 

using the critical values obtained from the distribution of  

under the null hypothesis of constant variance. If the 

maximum absolute value of  is greater than the critical 

value, the null hypothesis of homogeneity can be rejected. 

Define  as the value at which  is reached; if 

 exceeds the critical value, then  will be 

used as the time point at which a variance change in the series 

occurs. The term  is required for the standardization of 

the distribution. Following Inclán and Tiao (1994), the critical 

value of 1.358 is the 95th percentile of the asymptotic 

distribution of . Therefore, upper and lower 

boundaries can be established at  in the  plot. A 

change point in variance is identified if it exceeds these 

boundaries. However, if the series includes multiple change 

points, the  function alone will not detect change points at 

different intervals. Inclán and Tiao (1994) thus modified the 

algorithm that employs the  function to search 

systematically for different change points in the series. This is 

accomplished by evaluating the  function over different 

time periods, determined by breakpoints, which are identified 

by the  plot.  

2. GARCH(1,1) MODEL 

Following the seminal work of Engle[1] considers the 

return series  and the associated prediction error  

, in which  is the expectation of 

the conditional mean on the information set at time . The 

GARCH(1,1) model of Bollerslev is as follows:  

 

                           (4)

                                                    (5) 

                                                      (6) 

Where  which ensures that the 

conditional variance  is positive, and  are 

introduced for covariance stationarity. In the GARCH model, 

the sum of and  quantifies the persistence of shocks to 

conditional variance. A common empirical finding is that the 

sum of and is quite close to one, thereby implying that 

shocks are infinitely persistent, corresponding to an integrated 

GARCH (IGARCH) process.  

3. Multiple sudden changes with GARCH model 

In an effort to asses the impact of sudden changes on 

volatility, sudden changes should be incorporated into the 

standard GARCH model. Following the study of 

Agguhioarwal Inclán and Leal[6], we modify above GARCH 

(1,1) with multiple sudden changes that were identified via the 

ICSS algorithms, as follows: 

 

                           (7) 

                                                    (8)  

                (9) 

 

in which  are dummy variables that take a value of one 

from each point of sudden change of variance onwards, and 

take a value of zero elsewhere.  

 

III. DATE AND DESCERIPTIVE STATISTICS 

This study used the Friday closing price of shanghai 

composite index(SCI) from January 7, 2000 to October 10, 

2014. If there is a Friday holiday, we would use the last day of 

this week of trading as the stock price. And this date was 

provided by netease finance, which was famous for supporting 

financial information for consumers. 

For getting the time series of returns, we used the 

logarithmic method to all sample indices as 

follows.   for  where  
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is the returns for each index at time t,  is the current price, 

and  is the price from the previous day. 

 

Figure 1. Shows the dynamic of returns of SCI. 

 
NOTES: Dotted lines denoted  standard deviations. The 

ICSS algorithm estimated sudden change points. 

 

From this figure, we found that it was difficult for us to judge 

whether it was a stationary time series. In order to document 

this time series in a stationary process, we have conducted a 

unit root test.  

Table 1 shows the results of the unit root test for this time 

series of SCI returns and the descriptive statistics. As you can 

see, Panel A of Table 1 shows the results of three types of unit 

root test for each of the sample returns: the augmented 

Dickey-Fuller (ADF), Phillips-Peron (PP) and Kwiatkowski, 

Phillips, Schmidt, and Shin (KPSS). The null hypothesis of the 

ADF and PP tests is a time series that contains a unit root, 

whereas the KPSS test has the null hypothesis of a stationary 

process. As shown in Panel A, large negative values for the 

ADF and PP test statistics reject the null hypothesis of a unit 

root, while the KPSS test statistic does not reject the null 

hypothesis of stationary at a significance level of 1%. Thus, 

both return series are a stationary process. 

 

TABLE 1. Descriptive statistics and unit root tests. 

SCI 

Panel A: unit root tests 

ADF                                          -26.09533*** 

PP                                              -26.49189*** 

KPSS                                          0.093815 

Panel B: descriptive statistics 

Mean                                           0.060667 

Median                                        0.130604 

Maximum                                   13.94474 

Minimum                                   -14.89794 

Std.dev.                                       3.367629 

Skewness                                    0.097286 

Kurtosis                                      5.110621 

Jarque-bera                                 138.3341  [0.000000] 

Panel C：diagnosic tests 

Q(24)                                          54.423     [0.0000] 

                                        278.59     [0.0000] 

LM-RACH(10)                           6.784288   [0.0000] 

NOTES: P-value are in brackets; standard errors are in 

parentheses. The LM-ARCH(10)[F statistics] test statistic 

checks for remaining ARCH sffects in estimated residuals. 

The Ljung-Box test statistics check for the serial correlation of 

squared residual series. *, ** and *** indicate statistics are 

significant at the 10%, 5% and 1% level, respectively. 

Besides, as shown in Panel B of Table 1, the means of this 

time series are quite small, and the corresponding standard 

deviations are substantially higher. Based on these points, we 

inferred that the distribution of this time series was not normal 

incorporate with the value of skew, kurtosis, and Jarque-Bera 

tests. In order to illustrate the distribution of this return series 

intuitionally, figure 3 offers the graph of distribution of this 

time series. Look at this graph, we found that the distribution 

of this return series featured leptokurtosis and fat-tail and this 

phenomenon often appeared in the financial return series 

caused by the arch effect. 

 

FIGURE 2.  Shows the distribution of this time serious. 

 
In addition, we use the ARMA model and do some tests to 

confirm whether there is a ARCH effect in this serious time. 

As you can see in the table 1, the values of Q (24) is relatively 

larger value. Incorporate with the value of P, we considered 

that there was a feature of autocorrelation in this return series. 

Besides, we also detected the ARCH effect by using the 

ARCH-LM test. As a result, we found that it was good for us 

to use the GARCH model to estimate the persistence of 

volatility of SCI.  

Finally, we found that the volatility of return series of 

Shanghai Composite Index had the characteristic of clustering. 

It means that the volatility of this stock market in the past had 

an effect on the volatility for the future. It shows that the 

investor psychology is not mature in Chinese stock market. 

 

IV. RESULTS OF THR EMPIRICAL STUDY  

1. Sudden changes in conditional variance. 

ICSS algorithm calculates the standard deviations among 

change points to identify the number of sudden changes. 

Combined with the figure1, we can visually explain the point 

of sudden changes. The time periods of sudden changes in 

volatility detected by ICSS is also shown by table 2. Look at 

figure 1 and table 2, we detected that the sudden changes in 

volatility were related to global economic events, such as 

global financial crisis in 2007. Therefore, we found that it was 

helpful to detect the sudden changes by connecting with the 

global economic.  

 
TABLE 2. Sudden change points estimated by ICSS algorithm 

NUMBER OF                               TIME PERIOD                        

STANDARD    

SUDDEN                                                                                       

DEVIATION 

CHANGE POINTS                                                                  
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2                              7 JANUARY 2000 —1 DECEMBER 

2006     2.872468        

                         

                                 2 DECEMBER 2006 — 20 MARCH 

2009     5.517369                

                         

21 MARCH 2009    —  10 OCTOBER 

2014    2.708748              

NOTE: Time periods were detected by the ICSS algorithm. 

 

2. The selection of GARCH model. 

Before estimating the volatility model, we have to use the 

Auto-regressive and Moving Average(ARMA) model to 

remove the autoregressive of this return series for analyzing 

the volatility accurately. In other words, we have to use the 

right ARMA model to remove the short memory of this return 

series. There is no doubt that it is very important to choose the 

compatible lag with ARMA model. But we don’t hope to use 

the high lag in the ARMA model. Just as someone[10] 

mentioned that if we used the high lag to estimate in this 

model, we would probably remove the long memory. 

For these points, this study detected the lags from the 

combination of n=0,1,2,3 and s=0,1,2,3 based on the 

GARCH(1,1) model. We also adopted the laws of HQC 

(Hannan-Quinn Criter) to choose the best ARMA-GARCH 

(1,1) model as follows. 

 

 

TABLE 3   The results of HQC value in ARMA-GARCH 

 

MODEL 

 

(b  ,  c) 

 

Without 

dummies 

 

With 

dummies 

 

 

 

 

 

 

 

ARMA(b,c)-

GARCH(1,1) 

b=0,c=0 5.140794 5.120370 

b=0,c=1 5.144590 5.123410 

b=0,c=2 5.146672 5.124551 

b=0,c=3 5.147161 5.125450 

b=1,c=0 5.139934 5.120941 

b=1,c=1 5.135348 5.118338 

b=1,c=2 5.140463 5.125529 

b=1,c=3 5.145029 5.127446 

b=2,c=0 5.141802 5.120142 

b=2,c=1 5.137188 5.121090 

b=2,c=2 5.132247 5.118234 

b=2,c=3 5.137357 5.129130 

b=3,c=0 5.143023 5.120673 

b=3,c=1 5.143755 5.125442 

b=3,c=2 5.140035 5.121801 

b=3,c=3 5.149107 5.121961 

NOTES: the inclined number is the best one in these results. 

Look at table 3, we can find that ARMA (2,2)-GARCH(1,1) is 

the best one among these choices. 

 

3. ESTIMATION OF ARMA(2,2)-GARCH(1,1) 

 
TABLE 4. The estimation results of ARMA(2,2)-GARCH(1,1) 

ARMA(2,2)-GARCH(1，1)         ARMA(2,2)-

GARCH(1，1) 

WITHOUT DUMMIES                 WITH 

DUMMIES 

PANEL A: ESTIMATION RESULTS 

 0.056523 0.047795 

AR(1) 1.229524*** 1.200235*** 

AR(2) -0.878936*** -0.848809*** 

MA(1) -1.211359*** -1.175804*** 

MA(2) 0.907162*** 0.874340*** 

 0.154116* 1.120301*** 

 0.058837*** 0.051869** 

 0.926139*** 0.803869*** 

  3.395887** 

  -0.123070 

 0.984976 0.855738 

PANEL B: DIAGNOSIC TESTS 

Log-

likelihood 

 

-1876.133 

 

 

-1867.194 

 

AIC 5.112981 5.094151 

 19.479[0.491] 17.188[0.641] 

LM-

ARCH(10) 
0.566659[0.8417] 0.510964[0.8830] 

NOTES: P-value are in brackets; standard errors are in 

parentheses. The LM-ARCH(10)[F statistics] test statistic 

checks for remaining ARCH sffects in estimated residuals. 

The Ljung-Box test statistics check for the serial correlation of 

squared residual series. *, ** and *** indicate statistics are 

significant at the 10%, 5% and 1% level, respectively. 

This study is mainly aimed to consider the sudden changes 

in using GARCH model instead of the asymmetry of volatility 

of return series. Therefore, we won’t think about using the 

GJR-GARCH model or EGARCH model. 

Look at the estimation results of panel A in this table. We can 

know that AR (1), AR (2), MA (1), MA (2) are significant at 

the 10%, 5% or 1% level. But The others are not significant at 

any levels. Hence, we can’t take these variables into the 

GARCH model for describing the return series better.  

 
TABLE 5. The estimation results of ARMA(2,2)-GARCH(1,1) 

                   ARMA(2，2)-GARCH(1，1)         ARMA(2，2)-

GARCH(1，1) 

WITHOUT DUMMIES                     WITH 

DUMMIES   

PANEL A: ESTIMATION RESULTS 

AR(1) 1.228462*** 1.190216*** 

AR(2) -0.877662*** -0.839448*** 

MA(1) -1.210219*** -1.164312*** 

MA(2) 0.906024*** 0.864403*** 

 0.154881* 1.356963** 

 0.058813*** 0.058297** 

 0.926089*** 0.758659*** 

  4.348650** 

 0.984902 0.816958 

PANEL B: DIAGNOSIC TESTS 

Log-

likelihood 

 

-1876.257 

 

 

-1867.519 

 

AIC 5.110604 5.089603 

 19.210[0.508] 16.846[0.663] 

LM-

ARCH(10) 
0.561872[0.8455] 0.524567[0.8735] 

NOTES: P-value are in brackets; standard errors are in 

parentheses. The LM-ARCH(10)[F statitics] test statistic 

checks for remaining ARCH sffects in estimated residuals. 

The Ljung-Box test statistics check for the serial correlation of 

squared residual series. *, ** and *** indicate statistics are 

significant at the 10%, 5% and 1% level, respectively. 
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According to the table 5, we can know that every coefficient 

is almost significate at the 1% level. Additionally, the 

coefficients of ARCH term and GARCH term are larger than 

zero and the sums of this two coefficients is close to 1. Based 

on the sums of this two coefficients, we found that the 

historical volatility information had a persistent impact on 

volatility of stock returns and that the impact was hardly 

eliminated in short term, which meant that Chinese stock 

market shows highly speculative and risky feature. 

Except that, we can also know that the squared standardized 

residual can’t be against the scale hypothesis on the basis of 

the values. In other words, the return series is independent. 

From the values of LM-ARCH (10), we knew that the ARCH 

effect did not exist in this model. That was to say, there was no 

problem in using this GARCH model to describe the return 

series. 

At last, according to the laws of AIC and LOG-LIKELIHOOD, 

we thought the GARCH model with dummies as better than 

the GARCH model without dummies in demonstrating this 

return series. Therefore, this return series can be described by 

this GARCH model as bellow. 

 

GARCH estimation with sudden changes 

                                                                   (10) 

   

                                                                       (11)  

 

Look at the table 5, we found that the value of α and β without 

dummies was larger than the value of these two parameters 

without dummies. By following papers of these economists[6-

9], we detected that ignoring sudden changes on volatility 

would overestimate the persistence of volatility. In order to 

reflect this point more directly, we show the graph of the 

conditional variance of this two kinds of GARCH models1 as 

follows.  

 

 
 

V. CONCLUSION  

In this study, we found that the distribution of this return 

series in Chinese stock market featured leptokurtosis and fat-

tail. This phenomenon often appears in the financial return 

series. So we used ARMA model and conducted some tests to 

estimate the return series to confirm whether there was ARCH 

effect or not. We detected that the volatility of return series of 

Shanghai Composite Index had the characteristic of clustering, 

which meant that the volatility of this stock market in the past 

had an effect on the volatility for the future. And this 

phenomena can be explained by trading behavior. As a result, 

it was shown that the investor psychology was immature in 

Chinese stock market. Certainly, this situation is fit for the 

                                                           
1 Two kinds of models: GARCH model with sudden changes and 

GARCH model without sudden changes. 

national conditions in China that Chinese stock market just has 

undergone for only thirty four years and the mechanism was 

seriously unsound.  

Then, we used the GARCH model to explain this return 

series and found that the historical volatility information had a 

persistent impact on volatility of stock returns. And the impact 

was hardly eliminated in short term, which meant that Chinese 

stock market had a high speculation and risk. 

Therefore, we come to conclusion that the development of 

Chinese stock market is still immature. So the government 

should adopt this method to simulate, analyze and forecast the 

risk in Chinese stock market and should draft corresponding 

policies to improve market supervision ability. Moreover, 

investors should also use the volatility rules in stock market to 

avoid risk as much as possible. 

Finally, we also detected sudden changes by using the 

ICSS algorithm and incorporated these sudden changes to the 

global economic events. We found that the identification of 

sudden changes in volatility was largely related to the global 

economic events, like the global financial crisis occurred in 

2007. So we take sudden changes as dummy variable into 

GARCH(1,1) model . By comparing the results of estimation 

between two kinds of models2, we draw the same conclusion 

that ignoring sudden changes in volatility will overestimate 

volatility persistence in stock markets. 
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