
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 2 (July-Aug 2014), PP. 01-04

1 | P a g e

MJHP - JOB SCHEDULING ALGORITHM FOR

CLOUD ENVIRONMENT
S.Rekha, R.Santhosh Kumar

Department of Information Technology

Sri Venkateswara College of Engineering

Chennai, India

Abstract- Cloud computing can be defined as a type of Internet-

based computing, where different services such as servers,

storage and applications are delivered to an organization's

computers and devices through the Internet. It is a cluster of

network where the nodes interact to accomplish a big

computational task. Due to its efficiency in running multiple

programs simultaneously, cloud computing is emerging as a

popular domain in technology. Intense research has thrown

light on how the resources are shared and jobs are scheduled

amongst the nodes. A proper job-scheduling algorithm is

required for the efficient functioning of the cloud environment.

The proposed priority based scheduling algorithm for cloud

computing is based on factors that govern the functioning of a

job.

Keywords- Cloud Computing, Job Scheduling, Priority,

Computational Complexity and Level of Parallelism.

I. Introduction

With the rapid evolving technology, more business

organizations are adapting to cloud computing[3] because of

its merits such as the ability to process large amount of data

and perform complex computations. Thus for a cloud

environment to work effectively, proper scheduling has to be

designed and implemented as job delays or data loss can

prove to be a major hazard for the organization. A cost

effective and maximum performance achievable algorithm

will prove to be the backbone of the cloud environment. The

existing Batch mode heuristic scheduling algorithms

(BMHA) are: First Come First Served scheduling algorithm

(FCFS), Shortest Job Fastest Resource (SJFR), Longest Job

Fastest Resource (LJFR), Min–Min algorithm and Max–Min

algorithm. These algorithms consider all jobs with equal

importance. The existing Priority Based scheduling

Algorithm[1] gives first preference to a job that has highest

computational complexity and level of parallelism. However,

this algorithm faces the drawback of time wasted in waiting

for the high priority job to be executed completely. This time

delay can be avoided if medium[2] level job is executed prior

to the high priority job. This is the main focus of the

proposed MJHP - Medium Job High Priority job scheduling

algorithm[7]. Thus, an ideal scheduling[6] algorithm can be

developed that satisfies the time constraint as well as

achieves best performance. The paper is organized as

follows: section 2 deals with the cloud architecture, section 3

describes the proposed algorithm, section 4 provides a picture

of performance analysis and section 5 concludes the paper.

II. Cloud Architecture

The cloud architecture comprises of the cloud components

that communicative with each other and delivers the output.

The frontend platforms visible to the user can be a mobile

device or web and back end platform components are servers,

storage and a network. This is shown in fig 1.

Fig 1. Cloud Computing Architecture

Jobs arrive at the scheduler to be executed along with request

for cloud resources[3]. The function of the scheduler is to

select how several incoming jobs have to be processed and

allocate resources wisely. The overall performance and

throughput of the system depends on how the scheduler

works. The scenario is depicted in fig 2.

Fig 2 : Cloud job scheduler.

III. Proposed algorithm - MJHP Scheduling in Cloud

Computing

Jobs arriving at the scheduler are classified as high, medium

and low based on the computational complexity of the job

and level of parallelism of the resources. The level of

parallelism of a resource and computational power of a job is

decided by considering the job parallelism, resource

parallelism and job’s computational complexity respectively.

In the exisiting algorithm, higher priority was assigned to job

of higher computational complexity and the resource

exhibiting higher level of parallelism .The fastest resource

available was assigned to the job of high priority. This

method of allocation of resources to the job with high

priority[9] resulted in significant waste of time as the

processor has to wait till the complex job has to be executed.

This threat is overcome, in the proposed MJHP algorithm

where preference is given to a job with medium

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 2 (July-Aug 2014), PP. 01-04

2 | P a g e

[2]computational complexity. This priority algorithm

optimizes the computational speed of the cloud[4] and

reduces the usage of nodes and also shows a consistent

performance during execution of the assigned jobs.

A. Computational Complexity

The Directed Acyclic Graph (DAG) gives a visual

representation of the task partitioning [10]algorithm which

efficiently divides a job into subtasks of appropriate grain

size. This graph is shown in fig 3. Each node in DAG

represents sequence of operations. Each task[10] can be

executed on a processor and the directed arc depicts the

transfer of relevant data from one processor to another. The

amount of computations involved in a particular node is

represented by node weight.

Fig 3 : Directed Acyclic Graph (DAG)

This graph needs to be traversed to find out the longest path.

The total sum of the amount of computations involved in

each node through which the traversal has been performed

leads to computational complexity of the application.

B. Level Of Parallelism
Generally, the amount of parallelism exhibited by a job is

computed and analyzed by analyzing it’s layered DAG

representation. The width of the DAG is equal to the number

of sub tasks, which are executed through parallelism. The

maximum number of independent instructions getting

executed in a unit time (in one clock cycle) is equal to the

width of the DAG that gives the amount of parallelism

exhibited by the job. The amount of parallelism exhibited by

a resource is computed by considering the number of

operations per cycle per processor, number of processors per

node and number of nodes in a system. The amount of

parallelism exhibited by each free resource available in the

cloud is computed. The amounts of parallelism exhibited by

all the available free resources in the cloud are fixed by

analyzing the max, min and mid ranges. The value for the

level of parallelism is assigned by comparing the amount of

parallelism exhibited by each job with the max, min and mid

ranges.

C. Priority Assignment

In the proposed MJHP algorithm, higher priority is given to a

job which has high computational complexity and level of

parallelism because time can be saved if the medium level

jobs[2] are executed first. Medium priority is assigned

generally to a job which needs high computational power and

which exhibits high parallelism. A job, which exhibits low

parallelism and needs low computational power for execution

is given a low priority. The fastest free resource available in

the cloud is allocated to the job which has higher priority.

The procedure is given below :

Amount of Parallelism = OC* PN*NS
Where OC= No. of operations per cycle per processor

PN= No.of processors per node
NS=No. of nodes in a cloud.

Let m represent number of free resources available in the

cloud and n represent the number of jobs present in the

queue. The worst case time complexity of the algorithm is

O(n logn) ,when m <= n and O(m logm) when m > n.

D. Proposed MJHP Algorithm
Step 1 : AssignLevelofParallelism(ResourceList Rs_List)

While(Rs_List!=NULL)
For each resource
/*OC = No. of operations per cycle per processor
PN = No. of processors per node
NS = No. of nodes in a coud*/
/* LL_List contains the amount of parallelism
Exhibited by each resource */
LL_List[i] = OC*PN*NS
End While
 Find the Max, Min and Mid values in PR_List
/* LJ_List contains the amount of parallelism

exhibited
by each job */
For each job in LJ_List
If LJ_List[i] >= Maximum
LP_List[i] = High //LP_List contains the level of

parallelism value
Else If LJ_List[i] >= Middle
LP_List[i] = Medium
Else LP_List[i] = Low
EndIf
End AssignLevelofParallelism

Step 2 :Assign Priority Procedure
AssignPriority (CloudList CL_List)
While(CL_List !=NULL)
For each job
/* CompC_List contains the Computational

Complexity of jobs */
If (CompC_List[i] =Medium AND LP_List[i] =

Medium)
Priority[i] = 1
Else If (CompC_List[i] = Medium AND LP_List[i]

= High)
Priority[i] = 2
Else If (CompC_List[i] = Medium AND LP_List[i]

=Low)
Priority[i] = 3
Else If (CompC_List[i] = High AND LP_List[i] =

Medium)
Priority[i] = 4
Else If (CompC_List[i] = High AND LP_List[i] =

High)
Priority[i] = 5
Else If (CompC_List[i] = High AND LP_List[i] =

Low)
Priority[i] = 6

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 2 (July-Aug 2014), PP. 01-04

3 | P a g e

Else If (CompC_List[i] = Low AND LP_List[i] =

Medium)
Priority[i] = 7
Else If (CompC_List[i] = Low AND LP_List[i] =

High)
Priority[i] = 8
ElseIf (CompC_List[i] = Low AND LP_List[i] =

Low)
Priority[i] = 9
EndIf
End AssignPriority

 IV. PERFORMANCE STUDY

In this section, a performance study is carried out between

the algorithms mentioned so far - First Come First Served

scheduling algorithm (FCFS),Shortest Job Fastest Resource

(SJFR), Longest Job Fastest Resource (LJFR), Min–Min

algorithm, Max–Min algorithm, Priority Based Scheduling

[3]and MJHP Job Scheduling algorithm.

A. First Come First Served (FCFS)

FCFS is a very basic job scheduling [7]algorithm which

allocates resources to jobs as they arrive. It does not consider

factors like computational complexity or level of parallelism.

Hence its performance is very low. This is shown in Fig 4.

Fig 4:Implementation of FCFS

B. Shortest Job Fastest Resource (SJFR)

Shortest Job Fastest Resource is a scheduling algorithm,

assigns the job with very low turnaround time to the fastest

resources in the cloud. From the Fig 5 we can decipher that

SJFR is more stable in handling jobs and hence outperforms

FCFS scheduling algorithm.

Fig 5. Implementation of SJFR

C. Longest Job Fastest Resource (LJFR)

Longest Job Fastest Resource is a scheduling algorithm that

assigns the complex job to a big efficiency resource. It tries

to reduce the overall execution time of the jobs. From the Fig

6 of the LJFR algorithm we can infer that LJFR outperforms

FCFS and the SJFR as the jobs of high computational

complexity are assigned to faster resources in the cloud

which leads to shorter execution time.

Fig 6 - Implementation of LJFR

D. Min-Min Algorithm

The Min-Min algorithm schedules the less complex jobs to

high performance resources for execution. From the fig 7 we

can observe that outperforms FCFS and RR but shows low

performance comparing the other algorithms due to the delay

caused in execution of complex jobs.

Fig 7- Implementation of Min-Min

E. Max- Min Algorithm

The complex job is scheduled first to high performance

resources in the cloud and leads to the long delay in the

execution of less complex jobs. Fig 8 shows the performance

of the Max-Min algorithm where it outperforms FCFS, RR,

MIN-MIN algorithms.

Fig 8- Implementation of Max- Min

F. Priority Based Scheduling

The priority based scheduling [3]gives high priority to a job

with maximum computational complexity and level of

parallelism. Even though it outperforms FCFS, SJFR, LJFR,

Min-Min and Max-Min it still has a relatively low

performance than MJHP job scheduling algorithm[7] as some

amount of time is wasted when complex jobs are executed

first.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 2 (July-Aug 2014), PP. 01-04

4 | P a g e

Fig 9- Implementation of Priority Based Scheduling

G.MJHP Job Scheduling

The MJHP job scheduling algorithm gives high priority to a

job with medium computational complexity and medium

level of parallelism. It outperforms the existing FCFS, SJFR,

LJFR, Min-Min and Max-Min and the Priority Based

Scheduling algorithms[3]. The MJHP job scheduling

algorithm assigns the medium priority jobs with medium

computational complexity and medium level of parallelism to

the fastest resource . Hence the waiting time of jobs with

smaller computational complexity is avoided.

Fig 10- Implementation of MJHP Job Scheduling

H. Comparative Study Between MJHP Job Scheduling

Algorithm And Other Algorithms
From the above graphs, it is evident that MJHP has a higher

efficiency than other algorithms. It leads to much better

utilization of [9]. Factors that govern the performance of the

system such as computational complexity and level of

parallelism of a resource are properly analyzed and jobs are

classified as high, medium and low. First preference is given

to medium level jobs as the time taken to be completed is less

than high level jobs. Therefore, overall performance of the

system is improved. It outperforms existing algorithms like

FCFS, SJFR, LJFR, Min- Min, Max- Min and Priority Based

job scheduling[3].

Fig 11- Comparative Study graph

From fig 11, it is notable that for an ideal cloud

environment[3], MJHP scheduling proves to be the best as it

provides maximum achievable throughput in a minimum

amount of time making the network to work faster and more

reliable.
V. Conclusion

Cloud computing[3] has evolved as a dynamic technology

where more and more organizations are relying on it for

various services such as email, file sharing, customer

relationship management, storage and so on. Resources [9]

such as servers, storage, network, applications and processes

can be dynamically shaped or craved out from the underlying

hardware infrastructure and made available to a workload. A

proper scheduling algorithm is required for accomplishing

the goals of the services. The proposed MJHP job scheduling

algorithm satisfies the necessary constraints and proves to be

very efficient than other existing algorithms. The reliability

and consistency of the proposed MJHP algorithm is proved

through simulation results and its superiority over other

known algorithms is depicted.

REFERENCES
[1] S. Rekha and Santhosh Kumar. R, “Priority Based Job

Scheduling for Heterogenous Cloud Environment”, IJCSI

International Journal Of Computer Science, Volume 11, Issue 3

May 2014.

[2] Dr. G. Sumathi, R. Santhosh Kumar, and S. Sathyanarayanan,

“MidSFN Local Scheduling Algorithm for Heterogeneous Grid

Environment”, IJCSI International Journal of Computer Science

Issues, Vol. 9, Issue 3, No 3, May 2012

[3] Shamsollah Ghanbari, Mohamed Othman, “A Priority based Job

Scheduling Algorithm in Cloud Computing”, Procedia

Engineering 50 (2012) 778 – 785.

[4] Isam Azawi Mohialdeen, “COMPARATIVE STUDY OF

SCHEDULING ALGORITHMS IN CLOUD COMPUTING

ENVIRONMENT”, Journal of Computer Science, 9 (2): 252-

263, 2013, ISSN 1549-3636

[5] Stelios Sotiriadis, Nik Bessis, Nick Antonopoulos, “Towards

inter-cloud schedulers:A survey of meta-scheduling approaches”

,2011 International Conference on P2P, Parallel, Grid, Cloud

and Internet Computing

[6] Mladen A. Vouk, “Cloud Computing – Issues, Research and

Implementations”,Journal of Computing and Information

Technology - CIT 16,2008,4,235246doi:10.2498/cit.1001391

[7] Yun-Han Lee et al, Improving Job Scheduling Algorithms in a

Grid Environment, Future Generation Computer Systems,

27(2011) 991–998

[8] Wei Wang, Cloud-DLS: Dynamic Trusted Scheduling for Cloud

Computing, Expert Systems with Applications 39 (2012) 2321–

2329.

[9] Tai-Lung Chen et al, Scheduling of Job Combination and

Dispatching Strategy for Grid and Cloud System, GPC,(2010)

612–621.

[10] Monir Abdullah, Mohamed Othman et al, Optimal

Workload Allocation Model for Scheduling Divisible Data Grid

Applications,Future Generation Computer Systems 26 (2010)

971-978.

