ON SEMI- ρ-CONTINUITY WHERE $\rho \in\{\mathrm{L}, \mathrm{M}, \mathrm{R}, \mathrm{S}\}$

M. priyadarshini ${ }^{1}$, R. selvi ${ }^{2}$
Department of Mathematics,
${ }^{1}$ Raja Doraisingam Government Arts College, Sivagangai, India.
${ }^{2}$ Sri Parasakthi College for women, Courtallam, India.
${ }^{1}$ priyadarshinim156@gmail.com, ${ }^{2}$ r.selvimuthu @ gmail.com

Abstract

The authors Selvi.R, Thangavelu.P and Anitha.m introduced the concept of ρ-continuity between a topological space and a non empty set where $\rho \in\{\mathbf{L}, \mathbf{M}, \mathbf{R}, \mathbf{S}\}$ [4]. Navpreet singh Noorie and Rajni Bala[3] introduced the concept of $\mathbf{f}^{\#}$ function to characterize the closed, open and continuous functions. In this paper, the concept of Semi- ρ continuity is introduced and its properties are investigated and Semi- ρ-continuity is further characterized by using $\mathbf{f}^{\#}$ functions.

KEYWORDS: Multifunction, saturated set, ρ continuity, semi-open, semi-closed and continuity.

I. INTRODUCTION

By a multifunction $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$, We mean a point to set correspondence from X into Y with $\mathrm{F}(\mathrm{x}) \neq \phi$ for all $\mathrm{x} \in \mathrm{X}$. Any function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ induces a multifunction $\mathrm{f}^{-1} \mathrm{Of}$: $X \rightarrow \wp(X)$. It also induces another multifunction fOf^{-1} : $\mathrm{Y} \rightarrow(\mathrm{Y})$ provided f is surjective. The purpose is to introduced the notions of semi-L-Continuity, semi-MContinuity, semi-R-Continuity and semi-S-Continuity of a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ between a topological space and a non empty set. Here we discuss their links with semi-open and semi-closed sets. Also we establish pasting lemmas for semi-R-continuous and semi-S-continuous functions and obtain some characterizations for, semi- ρ-continuity. Navpreet singh Noorie and Rajni Bala [3] introduced the concept of $\mathrm{f}^{\#}$ function to characterize the closed, open and continuous functions. The authors [6] characterized ρ continuity by using $\mathrm{f}^{\#}$ - functions. In an analog way semi- ρ continuity is characterized in this paper.

II. PRELIMINARIES

The following definitions and results that are due to the authors [4] and Navpreet singh Noorie and Rajni Bala [3] will be useful in sequel.

Definition: 2.1

Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow \mathrm{Y}$ be a function. Then f is
(i) L-Continuous if $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A})$) is open in X for every open set A in X . [4]
(ii) M-Continuous if $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A})$) is closed in X for every closed set A in X. [4]

Definition: 2.2

Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then f is
(i) R-Continuous if $f\left(f^{-1}(\mathrm{~B})\right)$ is open in Y for every open set B in Y. [4]
(ii) S-Continuous if $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y for every closed set B in Y. [4]

Definition 2.3:

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be any map and E be any subset of X . then the following hold.
(i) $f^{\#}(E)=\left\{y \in Y: f^{-1}(y) \subseteq E\right\} ;$ (ii) $E^{\#}=f^{-1}\left(f^{\#}(E)\right)$. [3]

Lemma 2.4:
Let E be a subset of X and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Then the following hold.
(i) $f^{\#}(\mathrm{E})=\mathrm{Y} \backslash f(\mathrm{X} \backslash \mathrm{E})$;
(ii) $f(E)=Y \backslash f^{\#}(X \backslash E)$. [3]

Lemma 2.5:

Let E be a subset of X and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Then the following hold.
(i) $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{E})\right)=\mathrm{X} \mathrm{ff}^{-1}(\mathrm{f}(\mathrm{XIE}))$;
(ii) $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{E}))=\mathrm{X} \backslash \mathrm{f}$. ${ }^{1}\left(\mathrm{f}^{\#}(\mathrm{X} \backslash \mathrm{E})\right)$. [6]

Lemma 2.6:

Let E be a subset of X and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Then the following hold.
(i) $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{E})\right)=\mathrm{Y} \backslash \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{E})\right)$;
(ii) $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{E})\right)=\mathrm{Y} \backslash \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\right.$ $\mathrm{Y} \backslash \mathrm{E})$). [6]

Definition 2.7:

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{A} \subseteq \mathrm{X}$ and $\mathrm{B} \subseteq \mathrm{Y}$. we say that A is f -saturated if $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A})) \subseteq \mathrm{A}$ and B is f^{-1}-saturated if $\mathrm{f}(\mathrm{f}$ $\left.{ }^{1}(B)\right) \supseteq B$. Equivalently A is f-saturated if and only if $f^{-1}(f$ $(A))=A$, and B is f^{-1}-saturated if and only if $f\left(f^{-1}(B)\right)=B$.

Definition 2.8:

Let A be a subset of a topological space(X, τ). Then A is called
(i) semi-open if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$ and semi-closed if $\operatorname{int}(\operatorname{cl}(\mathrm{A})) \subseteq \mathrm{A} ;[1]$.
(ii) pre-open if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A}))$ and pre-closed if $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{A} ;[2]$.

Definition: 2.9

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then f is semi-continuous if $\mathrm{f}^{-1}(\mathrm{~B})$ is open in X for every semi-open set B in Y, [1].
Definition: $\mathbf{2 . 1 0}$
Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then f is semi-open (resp. semi-closed) if $f(A)$ is semi-open(resp. semi-closed) in Y for every semi-open(resp. semi-closed) set A in X.

III. \quad SEMI- ρ-CONTINUITY WHERE $\rho \in\{\mathrm{L}, \mathrm{M}$, R, S \}

Definition: 3.1

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be a function. Then f is
(i) Semi-L-Continuous if $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is open in X for every semi -open set A in X.
(ii) Semi-M-Continuous if $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is closed in X for every semi-closed set A in X .

Definition: 3.2

Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then f is
(i) Semi-R-Continuous if $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is open in Y for every semi-open set B in Y.
(ii) Semi-S-Continuous if $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y for every semi-closed set B in Y.

Example: 3.3

Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{Y}=\{1,2,3\} . \operatorname{Let} \tau=\{\Phi$, $X,\{a\},\{b\},\{a, b\}\}$.
Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ defined by $\mathrm{f}(\mathrm{a})=2, \mathrm{f}(\mathrm{b})=1, \mathrm{f}(\mathrm{c})=3$. Then f is Semi-L-Continuous and Semi-M-Continuous.

Example: 3.4

Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{Y}=\{1,2,3\}$. Let $\sigma=\{\Phi, \mathrm{Y}$, $\{1\},\{2\},\{1,2\}\}$,
Let $\mathrm{g}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ defined by $\mathrm{g}(\mathrm{a})=2, \mathrm{~g}(\mathrm{~b})=1, \mathrm{~g}(\mathrm{c})=3$. Then g is Semi-R-Continuous and Semi-S-Continuous.

Definition: 3.5

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function, Then f is
(i) semi -LR-Continuous, if it is both semi-LContinuous and semi-R-Continuous.
(ii) semi-LS -Continuous, if it is both semi-LContinuous and semi-S-Continuous.
(iii) semi-MR-Continuous, if it is both semi-MContinuous and semi-R-Continuous.
(iv) semi-MS-Continuous, if it is both semi -MContinuous and semi -S-Continuous.

Theorem: 3.6

(i) Every injective function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is semi-L-Continuous and semi-M-Continuous.
(ii) Every surjective function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is semi-R-Continuous and semi-S-Continuous.
(iii) Any constant function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is semiR -Continuous and semi-S-Continuous.
Proof:
(i) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be injective function. Then semi-L-Continuity and semi-M-Continuity follow from the fact that $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))=\mathrm{A}$. This proves (i).
(ii) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be surjective function. Since f is surjective, $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)=\mathrm{B}$ for every subset B of Y. Then f is both semi-RContinuous and semi-S-Continuous. This proves (ii).
(iii) Suppose $f(x)=y_{o}$ for every x in X. Then $f\left(f^{-1}(B)\right)$ $=Y$ if $y_{o} \in B$ and $f\left(f^{-1}(B)\right)=\Phi$,
if $y_{o} \in Y \backslash B$. This proves (iii).
Corollary: 3.7
If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be bijective function then f is semi-L-Continuous, semi-M-Continuous, semi-R-Continuous and semi-S-Continuous.

Theorem: 3.8

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$.
(i) If f is L-Continuous (resp. M-Continuous) then it is semi-L-Continuous (resp. semi-M-Continuous).
(ii) If f is R -Continuous (resp. S-Continuous) then it is semi-R-Continuous (resp. semi-S-Continuous).
Proof:
(i) Let $\mathrm{A} \subseteq \mathrm{X}$ be semi-open (resp. semi-closed) in X . since every semi-open (resp. semi-closed) set is open (resp. closed) and since f is L -continuous (resp. M-continuous),
$f^{-1}(f(A))$ is open (resp. closed) in X. Therefore f is semi -L-Continuous (resp. semi -M-Continuous).
(ii) Let $\mathrm{B} \subseteq \mathrm{Y}$ be semi-open (resp. semi-closed) in Y . since every semi-open (resp. semi-closed) set is open (resp. closed) and since f is R -continuous (resp. S-continuous),
$f\left(f^{-1}(B)\right)$ is open (resp. closed) in Y. Therefore f is semi-R-Continuous (resp. semi-S-Continuous).

Theorem: 3.9

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be semi-M-Continuous. Then $\operatorname{int}(\mathrm{cl}(\mathrm{A}))$ is f -saturated whenever A is f -saturated and preopen.
Proof:
Let $A \subseteq X$ be f-saturated. Since f is semi-MContinuous, $\Rightarrow \mathrm{A}$ is semi-closed set in $\mathrm{X} \Rightarrow \operatorname{int}(\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{A}$. And since A is pre-open $\Rightarrow A \subseteq \operatorname{int}(\operatorname{cl}(A))$. Therefore $\operatorname{int}(\operatorname{cl}(A))=A$. since A is f-saturated $\Rightarrow f^{-1}(f(A))=A$.

That implies $\operatorname{int}(\operatorname{cl}(A))=\mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))$. Therefore Hence $\operatorname{int}(\mathrm{cl}(\mathrm{A}))$ is f -saturated whenever A is f -saturated and pre-open.

Theorem: 3.10

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be semi-L-Continuous. Then $\operatorname{cl}(\operatorname{int}(\mathrm{A})$ is f -saturated whenever A is f -saturated and preclosed.
Proof:
Let $A \subseteq X$ be f-saturated. Since f is semi-LContinuous $\Rightarrow A$ is semi-open set in $X \Rightarrow A \subseteq \operatorname{cl}(\operatorname{int}(A))$. And since A is pre-closed $\Rightarrow \operatorname{cl}(\operatorname{int}(A)) \subseteq A$. Therefore $\operatorname{cl}(\operatorname{int}(A))=A$ since A is f-saturated $\Rightarrow f^{-1}(f(A))=A$. That implies $\quad \operatorname{cl}(\operatorname{int}(A))=\mathrm{f} \quad{ }^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))$. Therefore Hence $\mathrm{cl}(\operatorname{int}(\mathrm{A}))$ is f -saturated whenever A is f -saturated and preclosed.
Theorem: 3.11
Let f: $\mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be pre-S-Continuous. Then $\operatorname{int}(\mathrm{cl}(\mathrm{B}))$ is $\mathrm{f}^{-1}-$ saturated whenever B is f^{-1}-saturated and pre-open.
Proof:
Let $\mathrm{B} \subseteq \mathrm{Y}$ be f^{-1}-saturated. Since f is pre-SContinuous $\Rightarrow B$ is semi-closed set in $Y \Rightarrow \operatorname{int}(\operatorname{cl}(B)) \subseteq B$, and since B is pre-open $\Rightarrow B \subseteq \operatorname{int}(\operatorname{cl}(B))$, Therefore $\operatorname{int}(\mathrm{cl}(\mathrm{B}))=\mathrm{B}$, since B is f^{-1}-saturated $\Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)=\mathrm{B}$. which implies that $f\left(f^{-1}(\operatorname{int}(\operatorname{cl}(B)))\right)=\operatorname{int}(\operatorname{cl}(B))$, Therefore hence $\operatorname{int}(\mathrm{cl}(\mathrm{B}))$ is f^{-1}-saturated.

Theorem: 3.12

Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be pre-R-Continuous Then $\mathrm{cl}(\operatorname{int}(\mathrm{B}))$ is f^{-1} - saturated whenever B is f^{-1}-saturated and pre-closed.
Proof:
Let $\mathrm{B} \subseteq \mathrm{Y}$ be f^{-1}-saturated. Since f is pre-RContinuous $\Rightarrow \mathrm{B}$ is semi-open set in $\mathrm{Y} \Rightarrow \mathrm{B} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{B}))$, and since B is pre-closed $\Rightarrow \mathrm{cl}(\operatorname{int}(\mathrm{B})) \subseteq \mathrm{B}$, Therefore $\operatorname{cl}(\operatorname{int}(B))=B$, since B is $f^{-1}-$ saturated $\Rightarrow f\left(f^{-1}(B)\right)=B$. which implies that $f\left(\mathrm{f}^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B})))\right)=\operatorname{cl}(\operatorname{int}(\mathrm{B}))$, Therefore hence $\operatorname{cl}(\operatorname{int}(\mathrm{B}))$ is f^{-1}-saturated.

IV. PROPERTIES

In this section we prove certain theorems related with semiopen and semi-closed functions.

Theorem: 4.1

(i) Let f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be semi-open and semiContinuous, Then f is semi-L-Continuous.
(ii) Let $\mathrm{f}: \quad(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be open and semiContinuous, Then f is semi-R-Continuous.

Proof:
(i) Let $\mathrm{A} \subseteq \mathrm{X}$ be semi-open in X . Let f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be semi-open and semiContinuous.
since f is semi-open $\Rightarrow f(A)$ is semi-open in Y, and since f is semi-continuous, $\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is open in X . Therefore f is semi-L-Continuous, This proves (i).
(ii) Let $\mathrm{B} \subseteq \mathrm{Y}$ be semi-open in Y . Let f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be open and semiContinuous.
since f is semi-continuous $\Rightarrow \mathrm{f}^{-1}(\mathrm{~B})$ is open in X , and since f is open $\Rightarrow f\left(f^{-1}(B)\right)$ is open in Y, Therefore f is semi-R-Continuous, This proves (ii).

Theorem: 4.2

(i) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be semi-closed and semiContinuous, Then f is semi-M-Continuous.
(ii) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be closed and semiContinuous, Then f is semi-S-Continuous.

Proof:

(i) Let $\mathrm{A} \subseteq \mathrm{X}$ be semi-closed in X . Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be semi-closed and semi-continuous. since f is semiclosed $\Rightarrow f(A)$ is semi-closed in Y, and since f is semicontinuous, $\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is closed in X . Therefore f is semi-M-Continuous. This proves (i).
(ii) Let $\mathrm{B} \subseteq \mathrm{Y}$ be semi-closed in Y. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be closed and semi-Continuous. since f is semicontinuous $\Rightarrow f^{-1}(B)$ is closed in X, and since f is closed $\Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y. Therefore f is semi-SContinuous, This proves (ii).

Theorem: 4.3

Let X be a topological space.
(i) If A is a semi-open subspace of X , the inclusion function $\mathrm{j}: \mathrm{A} \rightarrow \mathrm{X}$ is semi-L-continuous and semi-R-continuous.
(ii) If A is a semi-closed subspace of X , the inclusion function $\mathrm{j}: \mathrm{A} \rightarrow \mathrm{X}$ is semi-M-continuous and semi -S-continuous.
Proof:
(i) Suppose A is a semi-open subspace of X . Let j : A $\rightarrow \mathrm{X}$ be an inclusion function. Let $\mathrm{U} \subset \mathrm{X}$ be semi-open in X then $j\left(j^{-1}(U)\right)=j(U n A)=U n A$ Which is open in X . Hence j is semi-R-continuous. Now, let $\mathrm{U} \subseteq \mathrm{A}$ be semi-open in A. Then $\mathrm{j}^{-1}(\mathrm{j}(\mathrm{U}))$ $=j^{-1}(U)=U$ which is open in A. Hence j is semi-Lcontinuous. This proves (i).
(ii) Suppose A is a semi-closed subspace of X . Let j : $\mathrm{A} \rightarrow \mathrm{X}$ be an inclusion function.
Let $\mathrm{U} \subset \mathrm{X}$ be semi-closed in X then $\mathrm{j}\left(\mathrm{j}^{-1}(\mathrm{U})\right)=\mathrm{j}(\mathrm{U}$ $\mathrm{n} A)=U \mathrm{n} A$, Which is closed in X. Hence j is semi-S-continuous. Now, let $U \subseteq A$ be semi-closed in A Then $j^{-1}(j(U))=j^{-1}(U)=U$ which is closed in A. Hence j is semi-M-continuous. This proves (ii).

Theorem: 4.4

Let $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be any two functions. Then the following hold.
(i) If $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is semi-L-continuous (resp. semi-Mcontinuous) and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is semi-open (resp. semiclosed) and continuous, then $\mathrm{gOf}: \mathrm{X} \rightarrow \mathrm{Z}$ is semi-L-continuous (resp. semi-M-continuous).
(ii) If $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is open (resp. closed) and semicontinuous and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is R-continuous (resp. S-
www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 121-226 continuous), then g Of is semi-R-continuous (resp. semi-S-continuous).
Proof:
(i) Suppose g is semi-L-continuous (resp. semi-Mcontinuous) and f is semi-open (resp. semi-closed) and continuous. Let A be semi-open (resp. semiclosed) in X. Then (g Of) ${ }^{-1}$. $(\mathrm{g} \mathrm{Of})(\mathrm{A})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-}\right.$ $\left.{ }^{1}(g(f(A)))\right)$. Since f is semi-open (resp. semi-closed) $\Rightarrow f(A)$ is semi-open (resp. semi-closed) in Y. since g is semi-L-continuous (resp. semi-Mcontinuous),
$\Rightarrow \mathrm{g}^{-1}(\mathrm{~g}(\mathrm{f}(\mathrm{A})))$ is open (resp. closed) in Y, since f is continuous $\Rightarrow \mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~g}(\mathrm{f}(\mathrm{A})))\right)$ is open (resp. closed) in X. Therefore, g Of is semi-L-continuous (resp. semi-M-continuous). This proves (i).
(ii) Let f: $\mathrm{X} \rightarrow \mathrm{Y}$ be R -continuous (resp. S-continuous) and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be open (resp. closed) and semicontinuous. Let B be semi-open (resp. semi-closed) in Z. Then $(\mathrm{g} O f)(\mathrm{g} \mathrm{Of})^{-1}(\mathrm{~B})=(\mathrm{g} \mathrm{Of})\left(\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~B})\right)\right)$ $=g\left(f\left(f^{-1}\left(g^{-1}(B)\right)\right)\right)$. since g is semi-continuous $\Rightarrow g^{-}$ ${ }^{1}(B)$ is open (resp. closed) in Y. since f is $R-$ continuous(resp. S-continuous)
$\Rightarrow f\left(f^{-1}\left(g^{-1}(B)\right)\right)$ is open (resp. closed) in Y. since g is open (resp. closed) $\Rightarrow \mathrm{g}\left(\mathrm{f}\left(\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~B})\right)\right)\right)$ is open (resp. closed)in Z. Therefore, gof is semi-Rcontinuous (resp. semi-S-continuous). This proves (ii).

Theorem: 4.5

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is semi-L-continuous and if A is an open subspace of X , then the restriction of f to A is semi-Lcontinuous.
Proof:
Let $h=f / A$. Then $h=f O j$, where j is the inclusion map. $\mathrm{j}: \mathrm{A} \rightarrow \mathrm{X}$. Since j is open and continuous and since f : $\mathrm{X} \rightarrow \mathrm{Y}$ is semi-L-continuous, using theorem (4.4 (i)), h is semi-L-continuous.

Theorem: 4.6

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is semi-M-continuous and if A is a closed subspace of X, then the restriction of f to A is semi-M-continuous.
Proof:
Let $h=f / A$. Then $h=f O j$, where j is the inclusion map $j: A \rightarrow X$. Since j is closed and continuous and since f : $\mathrm{X} \rightarrow \mathrm{Y}$ is semi-M-continuous, using theorem (4.4 (i)), h is semi-M-continuous.

Theorem: 4.7

Let $\mathrm{f}: \quad \mathrm{X} \rightarrow \mathrm{Y}$ be semi-R-continuous. Let $\mathrm{f}(\mathrm{x}) \subseteq \mathrm{Z} \subseteq \mathrm{Y}$ and $\mathrm{f}(\mathrm{X})$ be open in Z . Let $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Z}$ be obtained by from f by restricting the co-domain of f to Z. Then h is semi-R-continuous.
Proof:
Clearly $h=j$ Of where $j: f(x) \rightarrow Z$ is an inclusion map. Since $f(X)$ is open in Z, the inclusion map j is both open and semi-continuous. Then by applying theorem (4.4(ii)), h is semi-R-continuous.

Theorem: 4.8

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be semi-S-continuous. Let $\mathrm{f}(\mathrm{x}) \subseteq$ $\mathrm{Z} \subseteq \mathrm{Y}$ and $\mathrm{f}(\mathrm{X})$ be closed in Z . Let $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Z}$ be obtained by from f by restricting the co-domain of f to Z. Then h is semi-S-continuous.
Proof:

Clearly $h=j$ Of where $j: f(x) \rightarrow Z$ is an inclusion map. Since $f(X)$ is closed in Z, the inclusion map j is both closed and semi-continuous. Then by applying theorem 4.4(ii), h is semi-S-continuous.

Now we establish the pasting lemmas for semi-R-continuous and semi-S-continuous functions.

Theorem: 4.9

Let $\mathrm{X}=\mathrm{A} \cup \mathrm{B}$. Let $\mathrm{f}: \mathrm{A} \rightarrow(\mathrm{Y}, \sigma)$ and g : $\mathrm{B} \rightarrow(\mathrm{Y}, \sigma)$ be semi-R-continuous (res. semi-S-continuous) $f(x)=g(x)$ for every $x \in A \cap B$, then f and g combined to give a semi-R-continuous (res. semi-S-continuous) function $h: X \rightarrow Y$ defined by $h(x)=f(x)$ if $x \in A$, and $h(x)=g(x)$ if $x \in B$.
Proof:
Let C be a semi-open (res. semi-closed) set in Y . Now $h^{-1}(\mathrm{C})=\mathrm{h}\left(\mathrm{f}^{-1}(\mathrm{C}) \cup \mathrm{g}^{-1}(\mathrm{C})\right)=\mathrm{h}\left(\mathrm{f}^{-1}(\mathrm{C})\right) \cup \mathrm{h}\left(\mathrm{g}^{-1}(\mathrm{C})\right)$ $=f\left(f^{-1}(C)\right) \cup g\left(g^{-1}(C)\right)$. Since f is semi-R-continuous (res. semi-S-continuous), $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{C})\right.$) is open (resp. closed) in Y and Since g is semi-R-continuous (res. semi-S-continuous), $\mathrm{g}\left(\mathrm{g}^{-1}(\mathrm{C})\right)$ is open (resp. closed) in Y. Therefore, $\mathrm{hh}^{-1}(\mathrm{C})$ is open (resp. closed) in Y. Hence, h is semi-R-continuous (res. semi-S-continuous).

V. CHARACTERIZATIONS

Theorem: 5.1

A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is semi-L-continuous if and only if $f^{-1}\left(f^{\#}(A)\right)$ is closed in X for every semi-closed subset A of X.
Proof:
Suppose f is semi-L-continuous. Let A be semiclosed in X. Then $G=X \backslash A$ is semi-open in X. since f is semi-L-continuous and since G is semi-open in $X, \Rightarrow f^{-}$ ${ }^{1}(\mathrm{f}(\mathrm{G}))$ is open in X. By applying lemma ((2.5)-(i)),

$$
\Rightarrow \mathrm{f}^{-1}\left(\mathrm{f}^{\mathrm{\#}}(\mathrm{~A})\right)=\mathrm{X} \backslash \mathrm{f}^{-1}(\mathrm{f}(\mathrm{X} \backslash \mathrm{~A}))=\mathrm{X} \backslash \mathrm{f}^{-1}(\mathrm{f}(\mathrm{G}))
$$

That implies $f^{-1}\left(f^{\#}(A)\right)$ is closed in X.
Conversely, we assume that $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$ is closed in X for every semi-closed subset A of X.

Let G be a semi -open in X. By our assumption, f^{-1} $\left(f^{\#}(A)\right)$ is closed in X, where $A=X \backslash G$.

By using lemma ((2.5)-(ii)) $\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{G}))=\mathrm{X} \backslash \mathrm{f}$ ${ }^{1}\left(f^{\#}(X \backslash G)\right)=X \backslash f^{-1}\left(f^{\#}(A)\right)$.

That implies $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{G}))$ is open in X . Therefore, hence f is semi-L-continuous.

Theorem: 5.2

A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is semi-M-continuous if and only if $f^{-1}\left(f^{\#}(G)\right)$ is open in X for every semi-open subset G of X .
Proof:
Suppose f is semi-M-continuous. Let G be semiopen in X. Then $A=X \backslash G$ is semi-closed in X. since f is semi-M-continuous and since A is semi-closed in $X \Rightarrow f$ ${ }^{1}(f(A))$ is closed in X. By lemma ((2.5)-(i)),
$\Rightarrow \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)=\mathrm{X} \backslash \mathrm{f}^{-1}(\mathrm{f}(\mathrm{X} \backslash \mathrm{G}))=\mathrm{X} \backslash \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$. That implies $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)$ is open in X .

Conversely, we assume that $f^{-1}\left(f^{\#}(G)\right)$ is open in X for every semi-open subset G of X .

Let A be a semi-closed in X. By our assumption, f^{-} ${ }^{1}\left(f^{\#}(G)\right)$ is open in X, where $G=X \backslash A$.
www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 121-226
By using lemma ((2.5)-(ii)) $\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))=\mathrm{X} \backslash \mathrm{f}$ ${ }^{1}\left(\mathrm{f}^{\#}(\mathrm{X} \backslash \mathrm{A})\right)=\mathrm{X} \backslash \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)$.

That implies $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is closed in X . Therefore, hence f is semi-M-continuous.

Theorem: 5.3

The function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is semi-R-continuous if and only if $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y for every semi-closed subset B of Y. Proof:

Suppose f is semi-R-continuous. Let B be semiclosed in Y. Then $G=Y \backslash B$ is semi-open in Y. since f is semiR -continuous and since G is semi-open in Y ,
$\Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{G})\right)$ is open in Y . Now by using lemma((2.6)(i)),
$\Rightarrow \mathrm{f}^{\#}\left(\mathrm{f}{ }^{-1}(\mathrm{~B})\right)=\mathrm{Y} \backslash\left(\mathrm{f} \mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{B})\right)=\mathrm{Y} \backslash\left(\mathrm{f} \quad \mathrm{f}^{-1}(\mathrm{G})\right)$. That implies $f^{\#}\left(f^{-1}(B)\right)$ is closed in Y.

Conversely, we assume that $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y for every semi-closed subset B of Y.

Let G be semi-open in Y. Let $\mathrm{B}=\mathrm{Y} \backslash \mathrm{G}$. By our assumption, $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y .

By lemma ((2.6)(ii)) $\Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{G})\right)=\mathrm{Y} \backslash\left(\mathrm{f}^{\#}(\mathrm{f}\right.$ $\left.\left.{ }^{1}(\mathrm{Y} \backslash \mathrm{G})\right)\right)=\mathrm{Y} \backslash \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$,

This proves that $f\left(f^{-1}(G)\right)$ is open in Y. Therefore, hence f is semi- R -continuous.

Theorem: 5.4

The function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is semi-S-continuous if and only if $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{G})\right.$) is open in Y for every semi-open subset G of Y.
Proof:
Suppose f is semi-S-continuous. Let G be semiopen in Y. Then $B=Y \backslash G$ is semi-closed in Y. Since f is semi-S-continuous and since B is semi-closed in $Y \Rightarrow f\left(f^{-1}(B)\right)$ is closed in Y. Now by using lemma ((2.6)(i))

$$
\Rightarrow \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{G})\right)=\mathrm{Y} \backslash \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{G})\right)=\mathrm{Y} \backslash \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \text {. That }
$$ implies $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{G})\right)$ is open in Y. Conversely, we assume that $f^{\#}\left(f^{-1}(G)\right)$ is open in Y for every semi-open subset G of Y.

Let B be semi-closed in Y . Let $\mathrm{G}=\mathrm{Y} \backslash \mathrm{B}$. By our assumption, $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{G})\right)$ is open in Y . By lemma ((2.6) (ii) $) \Rightarrow f\left(f^{-1}(B)\right)=Y \backslash\left(f^{\#}\left(f^{-1}(Y \backslash B)\right)\right)=Y \backslash \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{G})\right)$, This proves that $f\left(f^{-1}(B)\right)$ is closed in Y. Therefore, hence f is semi-S-continuous.

Theorem: 5.5

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be a function. Then the following are equivalent.
(i) f is semi-L-continuous,
(ii) for every semi-closed subset A of $X, f^{-1}\left(f^{\#}(A)\right.$ is closed in X,
(iii) for every $\mathrm{x} \in \mathrm{X}$ and for every semi-open set U in X with $f(x) \in f(U)$ there is an open set G in X with $x \in G$ and $f(G) \subseteq f(U)$,
(iv) $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right)$ for every preclosed subset A of X .
(v) $\quad \operatorname{cl}\left(f{ }^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))\right)$ for every preopen subset A of X .
Proof:
(i) \Leftrightarrow (ii) : follows from theorem 5.1.
(i) \Leftrightarrow (iii): Suppose f is semi-L-continuous.

Let U be semi-open set in X such that $f(x) \in f(U)$.
since f is semi-L-continuous, $f^{-1}(f(U))$ is open in X.
since $\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))$ there is an open set G in X, such that $\mathrm{x} \in \mathrm{G} \subseteq \mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))$
$\Rightarrow \mathrm{f}(\mathrm{G}) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))\right) \subseteq \mathrm{f}(\mathrm{U})$. This proves (iii).
conversely, suppose (iii) holds.
Let U be semi-open set in X and $x \in f^{-1}(f(U))$. Then $\mathrm{f}(\mathrm{x}) \in \mathrm{f}(\mathrm{U})$.
By using (iii), there is an open set G in X containing x such that $\mathrm{f}(\mathrm{G}) \subseteq \mathrm{f}(\mathrm{U})$. Therefore $\mathrm{x} \in \mathrm{G} \subseteq \mathrm{f}^{-1}(\mathrm{f}(\mathrm{G})) \subseteq \mathrm{f}$ ${ }^{1}(f(U))$. That implies $f^{-1}(f(U))$ is open set in X,
This completes the proof for (i) \Leftrightarrow (iii).
(i) \Leftrightarrow (iv): Suppose f is semi-L-continuous.

Let A be a pre-closed subset of X . Then $\operatorname{cl}(\operatorname{int}(\mathrm{A}))$ is semiopen set in X. By the semi-L-continuity of $f \Rightarrow f^{-1}$ (f $(\operatorname{cl}(\operatorname{int}(\mathrm{A}))))$ is open in $\mathrm{X} \Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}\right.$ $(\operatorname{cl}(\operatorname{int}(A)))))$.
since A is pre-closed in $X \Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$,
$\Rightarrow \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right)$,
It follows that $\mathrm{f}^{-1}(\mathrm{f}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))\right)$ $\subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right)$, This proves (iv).
Conversely, we assume that(iv) holds.
Let U be semi-open set in $X \Rightarrow f^{-1}(f(U)) \subseteq f^{-1}(f(\operatorname{cl}(\operatorname{int}(U))))$ since U is pre-closed by applying (iv) we get f ${ }^{1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{U})))) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))\right)$,
Therefore $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U})) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))\right)$ and hence $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))$ is open in X.
This proves that f is pre-L-continuous.
(ii) \Leftrightarrow (v): Suppose (ii) holds. Let A be a semi-closed subset of X.
By using (ii) $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))\right)$ is closed in $\mathrm{X} \Rightarrow \mathrm{cl}(\mathrm{f}$ $\left.{ }^{1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))\right)\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))\right)$
since A is pre-open $\Rightarrow \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))\right) \Rightarrow \operatorname{cl}(\mathrm{f}$ $\left.{ }^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right) \subseteq \operatorname{cl}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))\right)\right)$
it follows that $\operatorname{cl}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))\right)$. This proves (v).
Conversely, let us assume that (v) holds. Let A be a preopen subset of X,
since A is semi-closed, by (v), we see that $\mathrm{cl}^{-1}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right) \subseteq \mathrm{f}^{-}$ ${ }^{1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$, Therefore $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$ is closed in X . This proves (ii).

Theorem: 5.6

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be a function. Then the following are equivalent.
(i) f is semi-M-continuous,
(ii) for every semi-open subset G of $\mathrm{X}, \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right.$ is open in X .
(iii) $\operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))$ for every pre-open subset A of X .
(iv) $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right)$ for every preclosed subset A of X.
Proof:
(i) \Leftrightarrow (ii): follows from theorem 5.2.
(i) \Leftrightarrow (iii) :Suppose f is semi-M-continuous. Let A be a preopen set in X.
Then $\operatorname{int}(\operatorname{cl}(\mathrm{A}))$ is semi-closed set in X .
Since f is semi-M-continuous, $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{int}(\mathrm{cl}(\mathrm{A}))))$ is closed in X,
$\Rightarrow \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))\right)=\mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))$.
Since A is pre-open in X, we see that $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A})) \subseteq \mathrm{f}$ ${ }^{1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))$,
www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 121-226 it follows that, $\operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right) \subseteq \mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))\right)=\mathrm{f}$ ${ }^{1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))$. This proves (iii).
Conversely, suppose (iii) holds.
Let A be semi-closed subset in $X \Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))) \subseteq \mathrm{f}^{-}$ ${ }^{1}(\mathrm{f}(\mathrm{A}))$. Since A is pre-open by applying (iii), $\operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right)$ $\subseteq \mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\operatorname{cl}(\mathrm{A}))))$,
it follows that $\operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))) \subseteq \mathrm{f}$ ${ }^{1}(\mathrm{f}(\mathrm{A})) \Rightarrow \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$.
That implies $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is closed set in X . This completes the proof for (i) \Leftrightarrow (iii).

(ii) \Leftrightarrow (iv): Suppose (ii) holds.

Let A be a pre-closed subset of X . Then $\operatorname{cl}(\operatorname{int}(\mathrm{A}))$ is semiopen in X . By (ii), $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{~A})))\right)$ is open in $\mathrm{X} \Rightarrow \mathrm{f}^{-}$ ${ }^{1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{~A})))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{~A})))\right)\right)$
since A is pre-closed in $X \Rightarrow \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(A)))\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$ $\Rightarrow \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{~A})))\right)\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right)$ we see that f ${ }^{1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{~A})))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right)$. This proves (iv).
Suppose (iv) holds. Let G be semi-open in $X \Rightarrow f$ ${ }^{1}\left(\mathrm{f}^{\#}(\mathrm{G})\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{cl}(\operatorname{int}(\mathrm{G})))\right)$
since G is pre-closed in X, by using (iv) $\Rightarrow \mathrm{f}$ ${ }^{1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{G})))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)\right)$
we see that $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)\right)$.
Then it follows that $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)$ is open in X . This proves (ii).

Theorem: 5.7

Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be a function and σ be a space with a base consisting of f^{-1} saturated open sets. Then the following are equivalent.
(i) f is semi-R-continuous,
(ii) for every semi-closed subset B of $\mathrm{X}, \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right.$ is closed in Y,
(iii)for every $x \in X$ and for every semi-open set V in Y with $x \in f^{-1}(V)$ there is an open set G in Y with $f(x) \in G$ and $\quad \mathrm{f} \quad{ }^{-1}(\mathrm{G}) \subseteq \mathrm{f} \quad{ }^{-1}(\mathrm{~V})$,
(iv) $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))\right) \subseteq \operatorname{int}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$ for every pre-closed subset $B \quad$ of (v) $\operatorname{cl}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$ for every pre-open subset B of Y. proof:
(i) \Leftrightarrow (ii): follows from theorem 5.3.
(i) \Leftrightarrow (iii) :Suppose f is semi-R-continuous. Let V be a semi-open set in Y such that $\quad x \in f^{-1}(V)$. Since f is semi-R-continuous, $f\left(f{ }^{-1}(V)\right)$ is open in Y. $f(x) \in f\left(f^{-1}(V)\right)$ there is an open set G in Y such that $\mathrm{f}(\mathrm{x}) \in \mathrm{G} \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)$.

That implies $\quad \mathrm{x} \in \mathrm{f} \quad{ }^{-1}(\mathrm{G}) \subseteq \mathrm{f} \quad{ }^{-1}\left(\mathrm{f}\left(\mathrm{f} \quad{ }^{-1}(\mathrm{~V})\right)\right) \in \mathrm{f} \quad{ }^{-1}(\mathrm{~V})$. This proves (iii). conversely, suppose (iii) holds. Let V be semi-open in Y and $\left.\mathrm{y} \in_{\mathrm{f}(\mathrm{f}} \quad{ }^{-1}(\mathrm{G})\right)$. Then $y=f(x) \quad$ for some $\quad x \in f \quad{ }^{-1}(V)$. By using (iii) there is an open set G in Y containing $f(x)$ such that $\quad \mathrm{f} \quad{ }^{-1}(\mathrm{G}) \subseteq \mathrm{f} \quad{ }^{-1}(\mathrm{~V})$. We choose G to a f^{-1}-saturated in Y. Then $G=f\left(f^{-1}(G)\right) \subseteq$ f(f ${ }^{-1}(\mathrm{~V})$).
This proves that $f\left(f^{-1}(V)\right)$ is open in Y. This proves that f is semi-R-continuous.
(i) \Leftrightarrow (iv): Suppose f is semi-R-continuous. Let B be preclosed subset in Y. $\quad \Rightarrow$ $\operatorname{cl}(\operatorname{int}(\mathrm{B}))$ is pre-closed set in Y. By the pre-R-continuity of f

International Journal of Technical Research and Applications e-ISSN: 2320-8163,
$\Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B})))\right)$ is open in $\left.\mathrm{Y} \Rightarrow \mathrm{f}^{(\mathrm{f}}{ }^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B})))\right)$
$\subseteq \operatorname{int}\left(\mathrm{f} \quad\left(\mathrm{f} \quad{ }^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))\right)\right)$
\Rightarrow Since B is pre-closed in Y, We have $f(f$ -
$\left.{ }^{1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B})))\right) \subseteq \mathrm{f}(\mathrm{f}$
$\left.{ }^{-1}(\mathrm{~B})\right)$
$\Rightarrow \operatorname{int}\left(\mathrm{f} \quad\left(\mathrm{f} \quad{ }^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))\right)\right) \subseteq \operatorname{int}\left(\quad \mathrm{f}\left(\mathrm{f} \quad{ }^{-1}(\mathrm{~B})\right)\right.$. Then it follows that $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))\right) \subseteq \operatorname{int}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$. This proves
(iv). Conversely, we assume that (iv) holds. Let B be semi-open set in $Y \Rightarrow f\left(f{ }^{-1}(B)\right) \subseteq f \quad(f \quad-$ $\left.{ }^{1}(\operatorname{cl}(\operatorname{int}(B)))\right)$.
Since B is pre-closed by applying (iv), we get $f(f$ $\left.{ }^{1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B})))\right) \subseteq \operatorname{int}\left(\mathrm{f}\left(\mathrm{f} \quad{ }^{-1}(\mathrm{~B})\right)\right)$.
Therefore $f\left(f^{-1}(B)\right) \subseteq \operatorname{int}\left(f\left(f^{-1}(B)\right)\right)$ and hence $f\left(f^{-1}(B)\right)$ is open in Y. This proves that f is semi-R-continuous. (ii) \Leftrightarrow (v): Suppose (ii) holds. Let B be a semi-closed subset of Y.

By using (ii) $\mathrm{f}^{\#}\left(\mathrm{f}{ }^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$ is closed in $\mathrm{Y} \Rightarrow \mathrm{cl}\left(\mathrm{f}^{\#}(\mathrm{f}-\right.$ $\left.\left.{ }^{1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f} \quad{ }^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$. Since B is pre-open in $Y \Rightarrow f^{\#}\left(\mathrm{f}^{-1}(B)\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$ $\Rightarrow \mathrm{cl}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{cl}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)\right)$, it follows that $\operatorname{cl}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$, This proves (v). Conversely, let us assume that (v) holds. Let B be a semi-closed subset of $Y \Rightarrow f^{\#}(f$
$\left.{ }^{1}(\operatorname{int}(\operatorname{cl}(B)))\right) \subseteq \mathrm{f}^{\#}(\mathrm{f}$ $\left.{ }^{-1}(\mathrm{~B})\right)$.
Since B is pre-open in Y, by $(v) \Rightarrow \operatorname{cl}\left(f^{\#}\left(f f^{-1}(B)\right)\right) \subseteq f^{\#}(f-$ $\left.{ }^{1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$,
$\Rightarrow \mathrm{cl}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$, Therefore $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y, This proves (ii).

Theorem: 5.8

Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then the following are equivalent.
(i) f is semi-S-continuous,
(ii) for every semi-open subset V of $\mathrm{Y}, \mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{~V}))$ is open in Y,
(iii) $\operatorname{cl}\left(f\left(f f^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$ for every pre-open subset B of Y.
(iv) $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B})))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$ for every preclosed subset B of Y.
Proof:
(i) \Leftrightarrow (ii): follows from theorem 5.4.
(i) \Leftrightarrow (iii) Suppose f is semi-S-continuous. Let B be a pre-open set in Y, therefore $\operatorname{int}(\mathrm{cl}(\mathrm{B}))$ is semiclosed in Y, \quad Since f is pre-S-continuous $\Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$ is closed in Y , $\Rightarrow \mathrm{cl}\left(\mathrm{f}\left(\mathrm{f} \quad{ }^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)\right) \subseteq \mathrm{f}\left(\mathrm{f} \quad{ }^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$. Since $\quad B \quad$ is pre-open in $\quad Y \Rightarrow f\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{f}(\mathrm{f}$ $\left.{ }^{1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right) \Rightarrow \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f} \quad{ }^{-1}(\mathrm{~B})\right)\right) \subseteq \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f} \quad{ }^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)\right)$ it follows that, $\operatorname{cl}\left(f\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$, This proves (iii).
conversely, suppose (iii) holds. Let B be semi-closed subset in Y ,
www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 121-226
$\left.{ }^{1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right) \subseteq \mathrm{f}(\mathrm{f}$
${ }^{-1}(\mathrm{~B})$).
Since B is pre-open by applying(iii), $\mathrm{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}(\mathrm{f}$ $\left.{ }^{1}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))\right)$
$\Rightarrow \mathrm{cl}(\mathrm{f}(\mathrm{f}$
$\left.\left.{ }^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}(\mathrm{f}$
${ }^{-1}(\mathrm{~B})$),

That implies $f\left(f^{-1}(\mathrm{~B})\right)$ is closed set in Y. This completes the proof for (i) \Leftrightarrow (iii). \quad (ii) \Leftrightarrow (iv): Suppose (ii) holds. Let B be a pre-closed subset of Y. Then $\operatorname{cl}(\operatorname{int}(B))$ is semi-open in Y. By (ii), $\mathrm{f}^{\#}\left(\mathrm{f}{ }^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))\right)$ is open in $\mathrm{Y} \Rightarrow \mathrm{f}^{\#}(\mathrm{f}$ $\left.{ }^{1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B})))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}\left(\mathrm{f} \quad{ }^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))\right)\right)$.
Since B is pre-closed in $Y \Rightarrow f^{\#}\left(f^{-1}(\operatorname{cl}(\operatorname{int}(B)))\right) \subseteq f^{\#}\left(f^{-1}(B)\right)$ $\Rightarrow \operatorname{int}\left(\mathrm{f}^{\#}\left(\mathrm{f} \quad{ }^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~B})))\right)\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}\left(\mathrm{f} \quad{ }^{-1}(\mathrm{~B})\right)\right)$. we see that $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$. This proves (iv).

Suppose (iv) holds. Let V be semi-open in $Y \Rightarrow f^{\#}(f$ $\left.{ }^{1}(\mathrm{~V})\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f} \quad{ }^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{V})))\right)$. Since V is pre-closed in Y, by using (iv), $\Rightarrow \quad \mathrm{f}^{\#}\left(\mathrm{f} \quad{ }^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{V})))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}\left(\mathrm{f} \quad{ }^{-1}(\mathrm{~V})\right)\right) \Rightarrow \mathrm{f}^{\#}(\mathrm{f}$ $\left.{ }^{1}(\mathrm{~V})\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}(\mathrm{f}\right.$
$\left.{ }^{-1}(\mathrm{~V})\right)$),
Then it follows that $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)$ is open in Y. This proves (ii).

VI. CONCLUTION

In this paper the notions of semi-L-Continuity, semi-MContinuity, semi-R-Continuity and semi-S-Continuity of a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ between a topological space and a nonempty set are introduced. The purpose of this paper is to introduce, semi- ρ-continuity. Here we discuss their links with semi-open, semi-closed sets. Also we establish pasting lemmas for semi-R-continuous and semi-s-continuous functions and obtain some characterizations for, semi- ρ continuity. We have put forward some examples to illustrate our notions

REFERENCES

[1] Levine N., Semi-Open sets and Semi-Continuity in Topological Spaces,Amer. Math. Monthly, 70 (1963), 36-41.
[2] Mashhour A.S, Abdel Monsef M.E and E.I Deeb S.N., on Pre-Continuous and Weak Pre-Continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
[3] Navpreet singh Noorie and Rajni Bala, Some Characterizations of open, closed and continuous Mappings, International J. Math. \& Math. Sci., Article ID 527106, (2008),1-5.
[4] Selvi R.,Thangavelu P., and Anitha M., ρ-Continuity Between a Topological space and a Non Empty Set, where $\rho \in\{\mathrm{L}, \mathrm{M}, \mathrm{R}, \mathrm{S}\}$, International Journal of Mathematical Sciences, 9(1-2)(2010), 97-104.
[5] Stone M. H., Applications of Theory of Boolean Rings to General Topology, Trans. A.M.S, 41(3),(1937), 375-481.
[6] Thangavelu P., Selvi R., On Characterization of ρ-Continuity where $\rho \in\{\mathrm{L}, \mathrm{M}, \mathrm{R}, \mathrm{S}\}$. International Journal of applied mathematical Analysis and applications, January-June 2012, Volume 7 page no 153-159.

