ON SEMI- ρ -CONTINUITY WHERE

$\rho \in \{L, M, R, S\}$

M. priyadarshini¹, R. selvi²

Department of Mathematics,

¹Raja Doraisingam Government Arts College, Sivagangai, India. ²Sri Parasakthi College for women, Courtallam, India.

¹priyadarshinim156@gmail.com, ²r.selvimuthu@gmail.com

ABSTRACT: The authors Selvi.R, Thangavelu.P and Anitha.m introduced the concept of ρ -continuity between a topological space and a non empty set where $\rho \in \{L, M, R, S\}$ [4]. Navpreet singh Noorie and Rajni Bala[3] introduced the concept of $f^\#$ function to characterize the closed, open and continuous functions. In this paper, the concept of Semi- ρ -continuity is introduced and its properties are investigated and Semi- ρ -continuity is further characterized by using $f^\#$ functions.

KEYWORDS: Multifunction, saturated set, ρ -continuity, semi-open, semi-closed and continuity.

I. INTRODUCTION

By a multifunction F: $X \rightarrow Y$, We mean a point to set correspondence from X into Y with $F(x) \neq \phi$ for all $x \in X$. Any function f: $X \rightarrow Y$ induces a multifunction f ⁻¹ Of: $X \rightarrow \mathcal{O}(X)$. It also induces another multifunction f O f⁻¹: $Y \rightarrow (Y)$ provided f is surjective. The purpose is to introduced the notions of semi-L-Continuity, semi-M-Continuity, semi-R-Continuity and semi-S-Continuity of a function $f: X \rightarrow Y$ between a topological space and a non empty set. Here we discuss their links with semi-open and semi-closed sets. Also we establish pasting lemmas for semi-R-continuous and semi-S-continuous functions and obtain some characterizations for, semi- ρ -continuity. Navpreet singh Noorie and Rajni Bala [3] introduced the concept of f# function to characterize the closed, open and continuous functions. The authors [6] characterized ρ continuity by using f[#]- functions. In an analog way semi- ρ continuity is characterized in this paper.

II. PRELIMINARIES

The following definitions and results that are due to the authors [4] and Navpreet singh Noorie and Rajni Bala [3] will be useful in sequel.

Definition: 2.1

Let $f: (x, \tau) \rightarrow Y$ be a function. Then f is

- (i) L-Continuous if $f^{-1}(f(A))$ is open in X for every open set A in X. [4]
- (ii) M-Continuous if $f^{-1}(f(A))$ is closed in X for every closed set A in X. [4]

Definition: 2.2

Let f: $X \rightarrow (Y, \sigma)$ be a function. Then f is

- (i) R-Continuous if $f(f^{-1}(B))$ is open in Y for every open set B in Y. [4]
- (ii) S-Continuous if $f(f^{-1}(B))$ is closed in Y for every closed set B in Y. [4]

Definition 2.3:

Let $f: X \to Y$ be any map and E be any subset of X. then the following hold.

(i) $f^{\#}(E) = \{ y \in Y : f^{-1}(y) \subseteq E \}; (ii) E^{\#} = f^{-1}(f^{\#}(E)). [3]$

Lemma 2.4:

Let E be a subset of X and let f: $X \rightarrow Y$ be a function. Then the following hold.

(i) $f^{\#}(E) = Y \setminus f(X \setminus E)$; (ii) $f(E) = Y \setminus f^{\#}(X \setminus E)$. [3]

Lemma 2.5:

Let E be a subset of X and let f: $X \rightarrow Y$ be a function. Then the following hold.

(i) $f^{-1}(f^{\#}(E)) = X \setminus f^{-1}(f(X \setminus E));$ (ii) $f^{-1}(f(E)) = X \setminus f^{-1}(f^{\#}(X \setminus E)).$ [6]

Lemma 2.6:

Let E be a subset of X and let f: $X \rightarrow Y$ be a function. Then the following hold.

(i) $f^{\#}(f^{-1}(E)) = Y \setminus f(f^{-1}(Y \setminus E))$; (ii) $f(f^{-1}(E)) = Y \setminus f^{\#}(f^{-1}(Y \setminus E))$. [6]

Definition 2.7:

Let $f: X \to Y$, $A \subseteq X$ and $B \subseteq Y$. we say that A is f-saturated if $f^{-1}(f(A)) \subseteq A$ and B is f^{-1} -saturated if $f(f^{-1}(B)) \supseteq B$. Equivalently A is f-saturated if and only if $f^{-1}(f(A)) = A$, and B is f^{-1} -saturated if and only if $f(f^{-1}(B)) = B$. **Definition 2.8:**

Let A be a subset of a topological space(X, \mathcal{T}). Then A is called

- (i) semi-open if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A)) \subseteq A$;[1].
- (ii) pre-open if $A \subseteq int(cl(A))$ and pre-closed if $cl(int(A)) \subseteq A$;[2].

Definition: 2.9

Let $f: (X,7) \rightarrow (Y, \sigma)$ be a function. Then f is semi-continuous if $f^{-1}(B)$ is open in X for every semi-open set B in Y, [1].

Definition: 2.10

Let $f: (X, \mathcal{T}) \to (Y, \sigma)$ be a function. Then f is semi-open (resp. semi-closed) if f(A) is semi-open(resp. semi-closed) in Y for every semi-open(resp. semi-closed) set A in X.

III. SEMI- ρ -CONTINUITY WHERE $\rho \in \{L, M, R, S\}$

Definition: 3.1

Let $f: (X, \mathcal{T}) \to Y$ be a function. Then f is

- (i) Semi-L-Continuous if $f^{-1}(f(A))$ is open in X for every semi-open set A in X.
- (ii) Semi-M-Continuous if $f^{-1}(f(A))$ is closed in X for every semi-closed set A in X.

Definition: 3.2

Let $f: X \to (Y, \sigma)$ be a function. Then f is

(i) Semi-R-Continuous if $f(f^{-1}(B))$ is open in Y for every semi-open set B in Y.

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 121-226

(ii) Semi-S-Continuous if f (f ⁻¹(B)) is closed in Y for every semi-closed set B in Y.

Example: 3.3

Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3\}$. Let $\mathcal{T} = \{\Phi, X, \{a\}, \{b\}, \{a, b\}\}$.

Let $f: (X, \ell) \rightarrow Y$ defined by f(a)=2, f(b)=1, f(c)=3. Then f is Semi-L-Continuous and Semi-M-Continuous.

Example: 3.4

Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3\}$. Let $\sigma = \{\Phi, Y, \{1\}, \{2\}, \{1,2\}\},$

Let $g: X \rightarrow (Y, \sigma)$ defined by g(a)=2, g(b)=1, g(c)=3. Then g is Semi-R-Continuous and Semi-S-Continuous.

Definition: 3.5

Let $f: (X, \mathcal{I}) \to (Y, \sigma)$ be a function, Then f is

- (i) semi -LR-Continuous, if it is both semi-L-Continuous and semi-R-Continuous.
- (ii) semi-LS -Continuous, if it is both semi-L-Continuous and semi-S-Continuous.
- (iii) semi-MR-Continuous, if it is both semi-M-Continuous and semi-R-Continuous.
- (iv) semi-MS-Continuous, if it is both semi -M-Continuous and semi -S-Continuous.

Theorem: 3.6

- (i) Every injective function f: $(X,7) \rightarrow (Y,\sigma)$ is semi-L-Continuous and semi-M-Continuous.
- (ii) Every surjective function $f:(X,\mathcal{T}) \to (Y,\sigma)$ is semi-R-Continuous and semi-S-Continuous.
- (iii) Any constant function f: $(X, \mathcal{I}) \rightarrow (Y, \sigma)$ is semi-R-Continuous and semi-S-Continuous.

Proof:

- (i) Let $f: (X, \mathcal{I}) \to (Y, \sigma)$ be injective function. Then semi-L-Continuity and semi-M-Continuity follow from the fact that $f^{-1}(f(A)) = A$. This proves (i).
- (ii) Let $f: (X, \mathcal{T}) \rightarrow (Y, \sigma)$ be surjective function. Since f is surjective, $f(f^{-1}(B)) = B$ for every subset B of Y. Then f is both semi-R-Continuous and semi-S-Continuous. This proves (ii).
- (iii) Suppose $f(x) = y_0$ for every x in X. Then $f(f^{-1}(B)) = Y$ if $y_0 \in B$ and $f(f^{-1}(B)) = \Phi$,

if $y_o \in Y \setminus B$. This proves (iii).

Corollary: 3.7

If f: (X, $\mathcal I$) ${\to}$ (Y, σ) be bijective function then f is semi-L-Continuous,

 $semi\mbox{-}M\mbox{-}Continuous, semi\mbox{-}R\mbox{-}Continuous and semi\mbox{-}S\mbox{-}Continuous.$

Theorem: 3.8

Let
$$f: (X, \mathcal{I}) \rightarrow (Y, \sigma)$$
.

- (i) If f is L-Continuous (resp. M-Continuous) then it is semi-L-Continuous (resp. semi-M-Continuous).
- (ii) If f is R-Continuous (resp. S-Continuous) then it is semi-R-Continuous (resp. semi-S-Continuous).

Proof:

(i) Let A⊆X be semi-open (resp. semi-closed) in X. since every semi-open (resp. semi-closed) set is open (resp. closed) and since f is L-continuous (resp. M-continuous),

f⁻¹ (f(A)) is open (resp. closed) in X. Therefore f is semi-L-Continuous (resp. semi-M-Continuous).

(ii) Let B⊆Y be semi-open (resp. semi-closed) in Y. since every semi-open (resp. semi-closed) set is open (resp. closed) and since f is R-continuous (resp. S-continuous),

f (f ⁻¹(B)) is open (resp. closed) in Y. Therefore f is semi-R-Continuous (resp. semi-S-Continuous).

Theorem: 3.9

Let $f: (X, l) \to Y$ be semi-M-Continuous. Then int(cl(A)) is f-saturated whenever A is f-saturated and preopen.

Proof:

Let $A \subseteq X$ be f-saturated. Since f is semi-M-Continuous, $\Rightarrow A$ is semi-closed set in $X \Rightarrow \operatorname{int}(\operatorname{cl}(A)) \subseteq A$. And since A is pre-open $\Rightarrow A \subseteq \operatorname{int}(\operatorname{cl}(A))$. Therefore $\operatorname{int}(\operatorname{cl}(A)) = A$. since A is f-saturated \Rightarrow f⁻¹(f(A)) = A.

That implies $int(cl(A))=f^{-1}(f(int(cl(A))))$. Therefore Hence int(cl(A)) is f-saturated whenever A is f-saturated and pre-open.

Theorem: 3.10

Let $f: (X, \mathcal{T}) \to Y$ be semi-L-Continuous. Then cl(int(A)) is f-saturated whenever A is f-saturated and preclosed.

Proof:

Let $A \subseteq X$ be f-saturated. Since f is semi-L-Continuous \Rightarrow A is semi-open set in $X \Rightarrow A \subseteq cl(int(A))$. And since A is pre-closed \Rightarrow $cl(int(A)) \subseteq A$. Therefore cl(int(A)) = A since A is f-saturated \Rightarrow $f^{-1}(f(A)) = A$. That implies $cl(int(A)) = f^{-1}(f(cl(int(A))))$. Therefore Hence cl(int(A)) is f-saturated whenever A is f-saturated and pre-closed.

Theorem: 3.11

Let $f: X \to (Y, \sigma)$ be pre-S-Continuous. Then int(cl(B)) is f^{-1} – saturated whenever B is f^{-1} –saturated and pre-open.

Proof:

Let $B \subseteq Y$ be f^{-1} —saturated. Since f is pre-S-Continuous $\Rightarrow B$ is semi-closed set in $Y \Rightarrow \operatorname{int}(\operatorname{cl}(B)) \subseteq B$, and since B is pre-open $\Rightarrow B \subseteq \operatorname{int}(\operatorname{cl}(B))$, Therefore $\operatorname{int}(\operatorname{cl}(B)) = B$, since B is f^{-1} —saturated $\Rightarrow f(f^{-1}(B)) = B$. which implies that $f(f^{-1}(\operatorname{int}(\operatorname{cl}(B)))) = \operatorname{int}(\operatorname{cl}(B))$, Therefore hence $\operatorname{int}(\operatorname{cl}(B))$ is f^{-1} —saturated.

Theorem: 3.12

Let $f: X \to (Y, \sigma)$ be pre-R-Continuous Then cl(int(B)) is f^{-1} – saturated whenever B is f^{-1} –saturated and pre-closed.

Proof:

Let $B \subseteq Y$ be f^{-1} -saturated. Since f is pre-R-Continuous \Rightarrow B is semi-open set in $Y \Rightarrow B \subseteq cl(int(B))$, and since B is pre-closed \Rightarrow $cl(int(B)) \subseteq B$, Therefore cl(int(B)) = B, since B is f^{-1} -saturated \Rightarrow $f(f^{-1}(B)) = B$. which implies that $f(f^{-1}(cl(int(B)))) = cl(int(B))$, Therefore hence cl(int(B)) is f^{-1} -saturated.

IV. PROPERTIES

In this section we prove certain theorems related with semiopen and semi-closed functions.

Theorem: 4.1

- (i) Let $f: (X, l) \rightarrow (Y, \sigma)$ be semi-open and semi-Continuous, Then f is semi-L-Continuous.
- (ii) Let f: $(X,7) \rightarrow (Y,\sigma)$ be open and semi-Continuous, Then f is semi-R-Continuous.

Proof:

(i) Let $A \subseteq X$ be semi-open in X. Let f: $(X, \mathcal{I}) \rightarrow (Y, \sigma)$ be semi-open and semi-Continuous.

since f is semi-open \Longrightarrow f(A) is semi-open in Y, and since f is semi-continuous, \Longrightarrow f $^{-1}(f(A))$ is open in X. Therefore f is semi-L-Continuous, This proves (i).

(ii) Let $B \subseteq Y$ be semi-open in Y. Let f: $(X, \mathcal{T}) \rightarrow (Y, \sigma)$ be open and semi-Continuous.

since f is semi-continuous \Longrightarrow f $^{-1}(B)$ is open in X, and since f is open \Longrightarrow f(f $^{-1}(B)$) is open in Y, Therefore f is semi-R-Continuous, This proves (ii).

Theorem: 4.2

- (i) Let $f: (X, \mathcal{T}) \rightarrow (Y, \sigma)$ be semi-closed and semi-Continuous, Then f is semi-M-Continuous.
- (ii) Let f: $(X, \mathcal{T}) \rightarrow (Y, \sigma)$ be closed and semi-Continuous, Then f is semi-S-Continuous.

Proof:

- (i) Let $A \subseteq X$ be semi-closed in X. Let $f: (X, \ell) \to (Y, \sigma)$ be semi-closed and semi-continuous. since f is semi-closed \Rightarrow f(A) is semi-closed in Y, and since f is semi-continuous, $\Rightarrow f^{-1}(f(A))$ is closed in X. Therefore f is semi-M-Continuous. This proves (i).
- (ii) Let $B \subseteq Y$ be semi-closed in Y. Let $f: (X, \mathcal{I}) \to (Y, \sigma)$ be closed and semi-Continuous. since f is semi-continuous $\Rightarrow f^{-1}(B)$ is closed in X, and since f is closed $\Rightarrow f(f^{-1}(B))$ is closed in Y. Therefore f is semi-S-Continuous, This proves (ii).

Theorem: 4.3

Let X be a topological space.

- (i) If A is a semi-open subspace of X, the inclusion function j: $A \rightarrow X$ is semi-L-continuous and semi-R-continuous.
- (ii) If A is a semi-closed subspace of X, the inclusion function j: $A \to X$ is semi-M-continuous and semi-S-continuous.

Proof:

- (i) Suppose A is a semi-open subspace of X. Let j: A
 → X be an inclusion function. Let U
 X be semi-open in X then j (j⁻¹(U)) = j (U n A) = U n A
 Which is open in X. Hence j is semi-R-continuous.
 Now, let U
 A be semi-open in A. Then j⁻¹ (j (U))
 = j⁻¹(U) = U which is open in A. Hence j is semi-L-continuous. This proves (i).
- (ii) Suppose A is a semi-closed subspace of X. Let j: A → X be an inclusion function.
 Let U ⊂ X be semi-closed in X then j(j⁻¹(U))=j(U n A)=U n A, Which is closed in X. Hence j is semi-S-continuous. Now, let U ⊆ A be semi-closed in A Then j⁻¹ (j(U)) = j⁻¹(U) =U which is closed in A. Hence j is semi-M-continuous. This proves (ii).

Theorem: 4.4

Let g: $Y \rightarrow Z$ and f: $X \rightarrow Y$ be any two functions. Then the following hold.

- (i) If g: $Y \rightarrow Z$ is semi-L-continuous (resp. semi-M-continuous) and f: $X \rightarrow Y$ is semi-open (resp. semi-closed) and continuous, then g O f: $X \rightarrow Z$ is semi-L-continuous (resp. semi-M-continuous).
- (ii) If g: $Y \rightarrow Z$ is open (resp. closed) and semicontinuous and f: $X \rightarrow Y$ is R-continuous (resp. S-

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 121-226 continuous), then g O f is semi-R-continuous (resp. semi-S-continuous).

Proof:

- (i) Suppose g is semi-L-continuous (resp. semi-M-continuous) and f is semi-open (resp. semi-closed) and continuous. Let A be semi-open (resp. semi-closed) in X. Then (g O f) ⁻¹.(g O f)(A)=f ⁻¹(g ⁻¹(g(f(A)))). Since f is semi-open (resp. semi-closed) ⇒ f (A) is semi-open (resp. semi-closed) in Y. since g is semi-L-continuous (resp. semi-M-continuous),
 - \Rightarrow g⁻¹(g(f(A))) is open (resp. closed) in Y, since f is continuous \Rightarrow f ⁻¹(g⁻¹(g(f(A)))) is open (resp. closed) in X. Therefore, g O f is semi-L-continuous (resp. semi-M-continuous). This proves (i).
- (ii) Let f: X → Y be R-continuous (resp. S-continuous) and g: Y → Z be open (resp. closed) and semi-continuous. Let B be semi-open (resp. semi-closed) in Z. Then (g O f) (g O f) -¹(B) = (g O f) (f -¹(g -¹(B))) = g(f(f -¹(g -¹(B)))). since g is semi-continuous ⇒ g -¹(B) is open (resp. closed) in Y. since f is R-continuous(resp. S-continuous) ⇒ f(f -¹(g -¹(B))) is open (resp. closed) in Y. since g is open (resp. closed) ⇒ g(f(f -¹(g -¹(B)))) is open (resp. closed) in Z. Therefore, g O f is semi-R-continuous (resp. semi-S-continuous). This proves

Theorem: 4.5

(ii).

If $f: X \rightarrow Y$ is semi-L-continuous and if A is an open subspace of X, then the restriction of f to A is semi-L-continuous.

Proof:

Let h = f/A. Then h = fOj, where j is the inclusion map. j: $A \rightarrow X$. Since j is open and continuous and since f: $X \rightarrow Y$ is semi-L-continuous, using theorem (4.4 (i)), h is semi-L-continuous.

Theorem: 4.6

If $f: X \rightarrow Y$ is semi-M-continuous and if A is a closed subspace of X, then the restriction of f to A is semi-M-continuous.

Proof:

Proof:

Let h = f/A. Then h = f O j, where j is the inclusion map j: $A \rightarrow X$. Since j is closed and continuous and since f: $X \rightarrow Y$ is semi-M-continuous, using theorem (4.4 (i)), h is semi-M-continuous.

Theorem: 4.7

Let $f: X \to Y$ be semi-R-continuous. Let $f(x) \subseteq Z \subseteq Y$ and f(X) be open in Z. Let $h: X \to Z$ be obtained by from f by restricting the co-domain of f to Z. Then h is semi-R-continuous.

Clearly h = j O f where $j: f(x) \rightarrow Z$ is an inclusion map. Since f(X) is open in Z, the inclusion map j is both open and semi-continuous. Then by applying theorem (4.4(ii)), h is semi-R-continuous.

Theorem: 4.8

Let $f: X \to Y$ be semi-S-continuous. Let $f(x) \subseteq Z \subseteq Y$ and f(X) be closed in Z. Let $h: X \to Z$ be obtained by from f by restricting the co-domain of f to Z. Then h is semi-S-continuous.

Proof:

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 121-226

By using lemma ((2.5) - (ii)) \Longrightarrow f ⁻¹(f(A)) = X \f ⁻¹(f*(X\A)) = X \ f ⁻¹(f*(G)).

That implies $f^{-1}(f(A))$ is closed in X. Therefore, hence f is semi-M-continuous.

Clearly $h=j\,O\,f$ where $j\colon f(x)\to Z$ is an inclusion map. Since f(X) is closed in Z, the inclusion map j is both closed and semi-continuous. Then by applying theorem 4.4(ii), h is semi-S-continuous.

Now we establish the pasting lemmas for semi-R-continuous and semi-S-continuous functions.

Theorem: 4.9

Let $X=A\bigcup B$. Let $f: A \to (Y, \sigma)$ and $g: B \to (Y, \sigma)$ be semi-R-continuous (res. semi-S-continuous) f(x)=g(x) for every $x \in A \cap B$, then f and g combined to give a semi-R-continuous (res. semi-S-continuous) function $h: X \to Y$ defined by h(x)=f(x) if $x \in A$, and h(x)=g(x) if $x \in B$.

Proof:

Let C be a semi-open (res. semi-closed) set in Y. Now $hh^{-1}(C) = h$ ($f^{-1}(C) \cup g^{-1}(C) = h$ ($f^{-1}(C) \cup h$ ($g^{-1}(C) \cup g^{-1}(C) = h$ ($f^{-1}(C) \cup g^{-1}(C) \cup g^{-1}(C) = h$ ($g^{-1}(C) \cup g^{-1}(C) \cup g^{-1}(C) = h$ (resp. closed) in Y and Since g is semi-R-continuous (res. semi-S-continuous), g ($g^{-1}(C)$) is open (resp. closed) in Y. Therefore, $hh^{-1}(C)$ is open (resp. closed) in Y. Hence, h is semi-R-continuous (res. semi-S-continuous).

V. CHARACTERIZATIONS

Theorem: 5.1

A function $f: X \to Y$ is semi-L-continuous if and only if $f^{-1}(f^{\#}(A))$ is closed in X for every semi-closed subset A of X.

Proof:

Suppose f is semi-L-continuous. Let A be semi-closed in X. Then $G = X \setminus A$ is semi-open in X. since f is semi-L-continuous and since G is semi-open in X, \Longrightarrow f $^{-1}(f(G))$ is open in X. By applying lemma ((2.5)-(i)),

 $\Longrightarrow f^{-1}(f^\#(A)) = X \setminus f^{-1}(f(X\backslash A)) = X \setminus f^{-1}(f(G)).$ That implies $f^{-1}(f^\#(A))$ is closed in X.

Conversely, we assume that $f^{-1}(f^{\#}(A))$ is closed in X for every semi-closed subset A of X.

Let G be a semi -open in X. By our assumption, $f^{-1}(f^{\#}(A))$ is closed in X, where $A = X \setminus G$.

By using lemma ((2.5)-(ii)) \Longrightarrow f $^{-1}(f(G))=X\setminus f^{-1}(f^{\#}(X\setminus G))=X\setminus f^{-1}(f^{\#}(A)).$

That implies f^{-1} (f (G)) is open in X. Therefore, hence f is semi-L-continuous.

Theorem: 5.2

A function $f: X \to Y$ is semi-M-continuous if and only if $f^{-1}(f^{\#}(G))$ is open in X for every semi-open subset G of X.

Proof:

Suppose f is semi-M-continuous. Let G be semi-open in X. Then $A = X \setminus G$ is semi-closed in X. since f is semi-M-continuous and since A is semi-closed in $X \Longrightarrow f^{-1}(f(A))$ is closed in X. By lemma ((2.5)-(i)),

 $\Longrightarrow f^{-1}(f^{\#}(G))=X\backslash f^{-1}(f(X\backslash G))=\ X\backslash f^{-1}(f(A)). \ That implies \ f^{-1}(f^{\#}(G)) \ is \ open \ in \ X.$

Conversely, we assume that $f^{-1}(f^{\#}(G))$ is open in X for every semi-open subset G of X.

Let A be a semi-closed in X. By our assumption, $f^{-1}(f^{\#}(G))$ is open in X, where $G = X \setminus A$.

Theorem: 5.3

The function $f: X \to Y$ is semi-R-continuous if and only if $f^{\#}(f^{-1}(B))$ is closed in Y for every semi-closed subset B of Y. Proof:

Suppose f is semi-R-continuous. Let B be semi-closed in Y. Then $G=Y\setminus B$ is semi-open in Y. since f is semi-R-continuous and since G is semi-open in Y,

 \Rightarrow f(f $^{-1}$ (G)) is open in Y. Now by using lemma((2.6)(i)),

 $\Longrightarrow f^{\#}(f^{-1}(B))=Y\backslash f(f^{-1}(Y\backslash B))=Y\backslash f(f^{-1}(G)). \ \ That implies \ f^{\#}(f^{-1}(B)) \ is \ closed \ in \ Y.$

Conversely, we assume that $f^{\#}(f^{-1}(B))$ is closed in Y for every semi-closed subset B of Y.

Let G be semi-open in Y. Let $B=Y\backslash G$. By our assumption, $f^{\#}(f^{-1}(B))$ is closed in Y.

By lemma ((2.6)(ii)) \implies f(f $^{-1}$ (G)) = Y \ (f*(f $^{-1}$ (Y\G))) = Y \ f*(f $^{-1}$ (B)),

This proves that $f(f^{-1}(G))$ is open in Y. Therefore, hence f is semi-R-continuous.

Theorem: 5.4

The function $f\colon X \to Y$ is semi-S-continuous if and only if $f^{\#}(f^{-1}(G))$ is open in Y for every semi-open subset G of Y.

Proof:

Suppose f is semi-S-continuous. Let G be semi-open in Y. Then $B=Y\backslash G$ is semi-closed in Y. Since f is semi-S-continuous and since B is semi-closed in $Y \Longrightarrow f(f^{-1}(B))$ is closed in Y. Now by using lemma ((2.6)(i))

 $\Longrightarrow f^\#(f^{-1}(G)) = Y \setminus f(f^{-1}(Y \setminus G)) = Y \setminus f(f^{-1}(B)).$ That implies $f^\#(f^{-1}(G))$ is open in Y. Conversely, we assume that $f^\#(f^{-1}(G))$ is open in Y for every semi-open subset G of Y.

Let B be semi-closed in Y. Let $G = Y \setminus B$. By our assumption, $f^{\#}$ (f $^{-1}(G)$) is open in Y. By lemma ((2.6) (ii)) \Longrightarrow $f(f^{-1}(B)) = Y \setminus (f^{\#}(f^{-1}(Y \setminus B))) = Y \setminus f^{\#}(f^{-1}(G))$, This proves that $f(f^{-1}(B))$ is closed in Y. Therefore, hence f is semi-S-continuous.

Theorem: 5.5

Let $f: (X, \mathcal{I}) \to Y$ be a function. Then the following are equivalent.

- (i) f is semi-L-continuous,
- (ii) for every semi-closed subset A of X , $f^{-1}(f^{\#}(A))$ is closed in X.
- (iii) for every $x \in X$ and for every semi-open set U in X with $f(x) \in f(U)$ there is an open set G in X with $x \in G$ and $f(G) \subseteq f(U)$,
- (iv) $f^{-1}(f(cl(int(A)))) \subseteq int(f^{-1}(f(A)))$ for every preclosed subset A of X.
- (v) $cl(f^{-1}(f^{\#}(A))) \subseteq f^{-1}(f^{\#}(int(cl(A))))$ for every preopen subset A of X.

Proof:

 $(i) \Leftrightarrow (ii)$: follows from theorem 5.1.

(i) ⇔ (iii): Suppose f is semi-L-continuous.

Let U be semi-open set in X such that $f(x) \subseteq f(U)$. since f is semi-L-continuous, $f^{-1}(f(U))$ is open in X.

since $x \in f^{-1}(f(U))$ there is an open set G in X, such that $x \in G \subseteq f^{-1}(f(U))$

 $\mathop{\Longrightarrow} f(G) \subseteq f(f^{\text{-l}}(f(U))) \subseteq f(U). \text{ This proves (iii)}.$

conversely, suppose (iii) holds.

Let U be semi-open set in X and $x \in f^{-1}(f(U))$. Then $f(x) \in f(U)$.

By using (iii), there is an open set G in X containing x such that $f(G) \subseteq f(U)$. Therefore $x \in G \subseteq f^{-1}(f(G)) \subseteq f^{-1}(f(U))$. That implies $f^{-1}(f(U))$ is open set in X,

This completes the proof for (i) \Leftrightarrow (iii).

(i) \Leftrightarrow (iv): Suppose f is semi-L-continuous.

Let A be a pre-closed subset of X. Then cl(int(A)) is semi-open set in X. By the semi-L-continuity of $f \Rightarrow f^{-1}$ (f (cl(int(A)))) is open in $X \Rightarrow f^{-1}(f(cl(int(A)))) \subseteq int(f^{-1}(f(cl(int(A)))))$.

since A is pre-closed in $X \Rightarrow f^{-1}(f(cl(int(A)))) \subseteq f^{-1}(f(A)),$ $\Rightarrow int(f^{-1}(f(cl(int(A))))) \subseteq int(f^{-1}(f(A))),$

It follows that $f^{-1}(f(cl(int(A)))) \subseteq int(f^{-1}(f(cl(int(A)))))$ $\subseteq int(f^{-1}(f(A)))$, This proves (iv).

Conversely, we assume that(iv) holds.

Let U be semi-open set in $X \Longrightarrow f^{-1}(f(U)) \subseteq f^{-1}(f(cl(int(U))))$ since U is pre-closed by applying (iv) we get $f^{-1}(f(cl(int(U)))) \subseteq int(f^{-1}(f(U)))$,

Therefore $f^{-1}(f(U)) \subseteq int(f^{-1}(f(U)))$ and hence $f^{-1}(f(U))$ is open in X.

This proves that f is pre-L-continuous.

(ii) \Leftrightarrow (v): Suppose (ii) holds. Let A be a semi-closed subset of X.

By using (ii) $f^{-1}(f^{\#}(int(cl(A))))$ is closed in $X \Longrightarrow cl(f^{-1}(f^{\#}(int(cl(A))))) \subseteq f^{-1}(f^{\#}(int(cl(A))))$

since A is pre-open \Longrightarrow $f^{-1}(f^{\#}(A)) \subseteq f^{-1}(f^{\#}(int(cl(A)))) \Longrightarrow cl(f^{-1}(f^{\#}(A))) \subseteq cl(f^{-1}(f^{\#}(int(cl(A)))))$

it follows that $cl(f^{-1}(f^{\#}(A))) \subseteq f^{-1}(f^{\#}(int(cl(A))))$. This proves (v).

Conversely, let us assume that (v) holds. Let A be a preopen subset of X,

since A is semi-closed, by (v), we see that $cl(f^{-1}(f^{\#}(A))) \subseteq f^{-1}(f^{\#}(int(cl(A)))) \subseteq f^{-1}(f^{\#}(A))$, Therefore $f^{-1}(f^{\#}(A))$ is closed in X. This proves (ii).

Theorem: 5.6

Let $f: (X, \mathcal{T}) \rightarrow Y$ be a function. Then the following are equivalent.

- (i) f is semi-M-continuous,
- (ii) for every semi-open subset G of X, f⁻¹ (f[#](G) is open in X.
- (iii) $cl(f^{-1}(f(A))) \subseteq f^{-1}(f(int(cl(A))))$ for every pre-open subset A of X.
- (iv) $f^{-1}(f^{\#}(cl(int(A)))) \subseteq int(f^{-1}(f^{\#}(A)))$ for every preclosed subset A of X.

Proof:

- (i) \Leftrightarrow (ii): follows from theorem 5.2.
- (i) \Leftrightarrow (iii) :Suppose f is semi-M-continuous. Let A be a preopen set in X.

Then int(cl(A)) is semi-closed set in X.

Since f is semi-M-continuous, f $^{-1}(f(int(cl(A))))$ is closed in X.

 \Rightarrow cl(f⁻¹(f(int(cl(A))))) = f⁻¹(f(int(cl(A)))).

Since A is pre-open in X, we see that $f^{-1}(f(A)) \subseteq f^{-1}(f(int(cl(A))))$,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 121-226 it follows that, $cl(f^{-1}(f(A))) \subseteq cl(f^{-1}(f(int(cl(A))))) = f^{-1}(f(int(cl(A))))$. This proves (iii).

Conversely, suppose (iii) holds.

Let A be semi-closed subset in $X \Rightarrow f^{-1}(f(\operatorname{int}(\operatorname{cl}(A)))) \subseteq f^{-1}(f(A))$. Since A is pre-open by applying (iii), $\operatorname{cl}(f^{-1}(f(A))) \subseteq f^{-1}(f(\operatorname{int}(\operatorname{cl}(A))))$,

it follows that $cl(f^{-1}(f(A))) \subseteq f^{-1}(f(int(cl(A)))) \subseteq f^{-1}(f(A)) \Longrightarrow cl(f^{-1}(f(A))) \subseteq f^{-1}(f(A)).$

That implies $f^{-1}(f(A))$ is closed set in X. This completes the proof for (i) \Leftrightarrow (iii).

(ii) ⇔ (iv): Suppose (ii) holds.

Let A be a pre-closed subset of X. Then cl(int(A)) is semiopen in X. By (ii), $f^{-1}(f^{\#}(cl(int(A))))$ is open in $X \Longrightarrow f^{-1}(f^{\#}(cl(int(A)))) \subseteq int(f^{-1}(f^{\#}(cl(int(A)))))$

since A is pre-closed in $X \Longrightarrow f^{-1}(f^{\#}(cl(int(A)))) \subseteq f^{-1}(f^{\#}(A))$ $\Longrightarrow int(f^{-1}(f^{\#}(cl(int(A))))) \subseteq int(f^{-1}(f^{\#}(A)))$ we see that $f^{-1}(f^{\#}(cl(int(A)))) \subseteq int(f^{-1}(f^{\#}(A)))$. This proves (iv).

Suppose (iv) holds. Let G be semi-open in $X \Longrightarrow f^{-1}(f^{\#}(G)) \subseteq f^{-1}(f^{\#}(cl(int(G))))$

since G is pre-closed in X, by using (iv) \Longrightarrow f $^{-1}(f^{\#}(cl(int(G)))) \subseteq int(f^{-1}(f^{\#}(G)))$

we see that $f^{-1}(f^{\#}(G)) \subset \operatorname{int}(f^{-1}(f^{\#}(G)))$.

Then it follows that $f^{-1}(f^{\#}(G))$ is open in X. This proves (ii).

Theorem: 5.7

Let $f: X \to (Y, \sigma)$ be a function and σ be a space with a base consisting of f^{-1} saturated open sets. Then the following are equivalent.

- (i) f is semi-R-continuous,
- (ii) for every semi-closed subset B of X, $f^{\#}(f^{-1}(B)$ is closed in Y,

(iii)for every $x \in X$ and for every semi-open set V in Y with $x \in f^{-1}(V)$ there is an open set G in Y with $f(x) \in G$ and $f^{-1}(G) \subseteq f^{-1}(V),$

(iv) $f(f^{-1}(cl(int(B)))) \subseteq int(f(f^{-1}(B)))$ for every pre-closed subset B of Y. (v) $cl(f^{\#}(f^{-1}(B))) \subseteq f^{\#}(f^{-1}(int(cl(B))))$ for every pre-open

(v) $cl(f''(f^{-1}(B))) \subseteq f''(f^{-1}(int(cl(B))))$ for every pre-open subset B of Y. proof:

(i) \Leftrightarrow (ii): follows from theorem 5.3. (i) \Leftrightarrow (iii): Suppose f is semi-R-continuous. Let V be a

semi-open set in Y such that $x \in f^{-1}(V)$. Since f is semi-R-continuous, $f(f^{-1}(V))$ is open in Y.

 $f(x) \in f(f^{-1}(V))$ there is an open set G in Y such that $f(x) \in G \subseteq f(f^{-1}(V))$.

implies $x \in f$ $^{-1}(G) \subseteq f$ $^{-1}(f(f -^{-1}(V))) \in f$ $^{-1}(V)$. This proves (iii) conversely, suppose (iii) holds. Let V be semi-open in Y and

 $y \in f(f)$

Then y=f(x) for some $x \in f$ $^{-1}(V)$. By using (iii) there is an open set G in Y containing f(x) such that f $^{-1}(G) \subseteq f$ $^{-1}(V)$.

We choose G to a f⁻¹-saturated in Y. Then $G=f(f^{-1}(G)) \subseteq f(f^{-1}(V))$.

This proves that f(f -1(V)) is open in Y. This proves that f is semi-R-continuous.

(i) \Leftrightarrow (iv): Suppose f is semi-R-continuous. Let B be preclosed subset in Y. \Rightarrow

 \Rightarrow f (f $^{-1}$ (cl(int(B)))) is open in Y \Rightarrow f (f $^{-1}$ (cl(int(B)))) ⁻¹(cl(int(B))))) \subseteq int(f ⇒Since B is pre-closed in Y, We have f (f - $^{1}(cl(int(B)))) \subseteq f(f$ ⁻¹(B)) \Rightarrow int(f (f $^{-1}(cl(int(B)))) \subset int($ f(f $^{-1}(B)$). Then it follows that $f(f^{-1}(cl(int(B)))) \subset int(f(f^{-1}(B)))$. This proves (iv). Conversely, we assume that (iv) holds. Let B be semi-open set in $Y \Longrightarrow f(f^{-1}(B)) \subset f$ (f ¹(cl(int(B)))). Since B is pre-closed by applying (iv), we get f(f $^{1}(cl(int(B)))) \subseteq int(f(f$ Therefore $f(f^{-1}(B)) \subseteq int(f(f^{-1}(B)))$ and hence $f(f^{-1}(B))$ is open in This f semi-R-continuous. proves that is (ii) ⇔ (v): Suppose (ii) holds. Let B be a semi-closed subset using (ii) $f^{\#}(f^{-1}(int(cl(B))))$ is closed in $Y \Longrightarrow cl(f^{\#}(f^{-1}(int(cl(B)))))$ $^{1}(int(cl(B)))) \subset f^{\#}(f$ Since B is pre-open in $Y \Longrightarrow f^{\#}(f^{-1}(B)) \subseteq f^{\#}(f^{-1}(int(cl(B))))$ \Rightarrow cl(f[#](f⁻¹(B))) \subseteq cl(f[#](f⁻¹(int(cl(B))))), it follows that $cl(f^{\#}(f^{-1}(B))) \subset f^{\#}(f^{-1}(int(cl(B)))),$ proves (v). Conversely. let us assume that (v) holds. Let B be a semi-closed subset of $Y \Longrightarrow f^{\#}(f$ $^{1}(int(cl(B)))) \subseteq f^{\#}(f$ ⁻¹(B)). Since B is pre-open in Y, by $(v) \Longrightarrow cl(f^{\#}(f^{-1}(B))) \subseteq f^{\#}(f^{-1}(B))$ $^{1}(int(cl(B)))),$ \Rightarrow cl(f[#](f⁻¹(B))) \subset f[#](f⁻¹(B)), Therefore f[#](f⁻¹(B)) is closed

Theorem: 5.8

in Y, This proves (ii).

Let $f: X \rightarrow (Y, \sigma)$ be a function. Then the following are equivalent.

(i) f is semi-S-continuous,

follows

- (ii) for every semi-open subset V of Y, $f^{\#}(f^{-1}(V))$ is open in Y,
- (iii) $cl(f(f^{-1}(B))) \subseteq f(f^{-1}(int(cl(B))))$ for every pre-open subset B of Y.
- (iv) $f^{\#}(f^{-1}(cl(int(B)))) \subseteq int(f^{\#}(f^{-1}(B)))$ for every preclosed subset B of Y.

from

5.4.

theorem

Proof:

in Y,

(i) ⇔ (ii):

f $(i) \Leftrightarrow (iii)$:Suppose is semi-S-continuous. Let B be a pre-open set in Y, therefore int(cl(B)) is semiclosed in Y, Since f is pre-S-continuous \Rightarrow f(f $^{-1}$ (int(cl(B)))) is closed in Y, \Rightarrow cl(f(f $^{-1}(int(cl(B)))) \subseteq f(f$ ⁻¹(int(cl(B)))). Since B is pre-open in $Y \Longrightarrow f(f)$ $^{-1}(B)) \subseteq f(f)$ $^{1}(int(cl(B)))) \Longrightarrow cl(f(f$ $^{-1}(B))) \subset cl(f(f$ ⁻¹(int(cl(B))))) it follows that, $cl(f(f^{-1}(B))) \subset f(f^{-1}(int(cl(B))))$, This proves conversely, suppose (iii) holds. Let B be semi-closed subset www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 121-226 $^{1}(int(cl(B)))) \subseteq f(f$ $^{-1}(B))$. Since B is pre-open by applying(iii), $cl(f(f^{-1}(B))) \subseteq f(f^{-1}(int(cl(B))))$

 $^{-1}(B))) \subset f(f)$ \Rightarrow cl(f(f $^{-1}(B)$). That implies f(f⁻¹(B)) is closed set in Y. This completes the proof for (i) \Leftrightarrow (iii). Suppose (ii) holds. Let B be a pre-closed subset of Y. Then cl(int(B)) is semi-open in Y. By (ii), $f^{\#}(f^{-1}(cl(int(B))))$ is open in $Y \Longrightarrow f^{\#}(f)$ $^{1}(cl(int(B)))) \subseteq int(f^{\#}(f$ $^{-1}(cl(int(B)))).$ Since B is pre-closed in $Y \Longrightarrow f^{\#}(f^{-1}(cl(int(B)))) \subset f^{\#}(f^{-1}(B))$ $^{-1}(cl(int(B)))) \subset int(f^{\#}(f$ we see that $f^{\#}(f^{-1}(cl(int(B)))) \subseteq int(f^{\#}(f^{-1}(B)))$. This proves

Suppose (iv) holds. Let V be semi-open in $Y \Longrightarrow f^{\#}(f^{-1}(V)) \subseteq f^{\#}(f^{-1}(\operatorname{cl}(\operatorname{int}(V))))$. Since V is pre-closed in Y, by using (iv), $\Longrightarrow f^{\#}(f^{-1}(\operatorname{cl}(\operatorname{int}(V)))) \subseteq \operatorname{int}(f^{\#}(f^{-1}(V))) \Longrightarrow f^{\#}(f^{-1}(V))$,

Then it follows that $f^{\#}(f^{-1}(V))$ is open in Y. This proves (ii).

VI. CONCLUTION

In this paper the notions of semi-L-Continuity, semi-M-Continuity, semi-R-Continuity and semi-S-Continuity of a function $f: X \to Y$ between a topological space and a nonempty set are introduced. The purpose of this paper is to introduce, semi- ρ -continuity. Here we discuss their links with semi-open, semi-closed sets. Also we establish pasting lemmas for semi-R-continuous and semi-s-continuous functions and obtain some characterizations for, semi- ρ -continuity. We have put forward some examples to illustrate our notions

REFERENCES

- [1] Levine N., Semi-Open sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [2] Mashhour A.S, Abdel Monsef M.E and E.I Deeb S.N., on Pre-Continuous and Weak Pre-Continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [3] Navpreet singh Noorie and Rajni Bala, Some Characterizations of open, closed and continuous Mappings, International J. Math. & Math. Sci., Article ID 527106, (2008),1-5.
- [4] Selvi R., Thangavelu P., and Anitha M., ρ -Continuity Between a Topological space and a Non Empty Set, where $\rho \in \{L, M, R, S\}$, International Journal of Mathematical Sciences, 9(1-2)(2010), 97-104.
- [5] Stone M. H., Applications of Theory of Boolean Rings to General Topology, Trans. A.M.S, 41(3),(1937), 375-481.
- [6] Thangavelu P., Selvi R., On Characterization of ρ -Continuity where $\rho \in \{L, M, R, S\}$. International Journal of applied mathematical Analysis and applications, January-June 2012, Volume 7 page no 153-159.