
International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 2, Issue 4 (july-aug 2014), PP. 122-126 

122 | P a g e

 H- FUNCTION AND GENERAL CLASS OF 

POLYNOMIAL AND HEAT 

CONDUCTION IN A ROD. 

Dr. Rachna Bhargava 
Department of Mathematics 

Global College of Technology (GCT), Jaipur-302022, India 

Abstract - In this paper, first we evaluate a finite 

integral involving general class of polynomials and the 

product of two H -functions and then we make its

application to solve boundary value problem on heat 

conduction in a rod under the certain conditions and 

further we establish an expansion formula involving 

about product of H -function. In view of generality of

the polynomials and products of H -function occurring

here in, on specializing the coefficients of polynomials 

and parameters of the H -function, our results would

readily reduce to a large number of results involving 

known class of polynomials and simpler functions. 
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I. INTRODUCTION

The general class of polynomials introduced by 

Shrivastava [7] and defined by [8] and [10] as follows: 
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where m is an arbitrary positive integer the coefficient 

An,k (n,k ≥ 0) are arbitrary constants, real or complex. 

H -function will be defined and represented as

follows [2] and [4]: 
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and also the H -function occurring in the paper was

introduced by Inayat-Hussain [4] and studied by 

Bushman and Shrivastava [2]. The following series 

representation for the H -function was obtained by

Rathie [5]. 
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The nature of contour L and series of various conditions 

on its parameters can be seen in the paper by Bushman 

and Shrivastava [2]. We shall also make use of the 

following behaviour of the z]H
NM,

QP,
 function for

small value of f(z) as recorded by Saxena [6, p.112, 

eq.(2.3) and (2.4)]

 | z| ( 0   z}H
NM,

QP,
 for small z 

where (2)for  )/(d Remin jj
M j1






and (4)for  )/(b Remin jj
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The following more general conditions given by 
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                 II. MAIN INTEGRAL 
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Where  (i) 
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Proof  : To establish the above integral (5), we first express 

both the general class of polynomials and 

z]H
2N2M

2Q2p





occurring in its left hand side in their 

respective series forms with the help of equation (1) and (3) 

respectively and then interchange the order of integration 

and summation (which is permissible under the condition 

stated) and using (3) and with the help of x-integral given by 

Gradshteyn, I.S. and Ryzhik [3]. Then we substitute the 

above   with the help of (4) and reinterpret the result 

thus in terms of H -function, we arrive at the right hand 

side of desired results (5). 
III. MAIN PROBLEM 

 

 Problem of heat conduction in a rod with one end 

held at zero temperature and the other end exchanges heat 

freely with the surrounding medium at zero temperature. If 

the thermal coefficients are constants and there are no 

source of thermal energy, then temperature in a one-

dimensional rod 0  x  L satisfies the following heat 

equation 
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 In view of the problem, the solution of this partial 

differential equation satisfy the boundary conditions 

  

                  0   t)0         …(7) 
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 …(8) 

  (x,t) is finite as t         …(9) 

                   The initial condition 

           (x,0) = f(x)       …(10) 

The solution of partial differential equation (6) can be 

written as [11, p.77,(4)] 
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at t = 0 
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The solution of the problem to be obtained is 
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valid under the condition of (5). 

Proof: The solution of the problem stated is given as 

[11, p.77, (4)] 
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If t = 0, then by virtue of (11) and (12), we have 
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Multiplying both sides of (13) by
L

x
sin 

m


  and  

integrate with respect to x from 0 to L, we get 
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and using (5) and orthogonality property [12, p.28] by 

Szego, we obtain 

mm

m

21

m

m 2sin 2

2
sin 

d
4

B














 







 






 

















 rh,2b2k2b1k1b2m

12h0r

2m2n

02k

1m1[n

01k

2 k'  

2
sin y

k

A n

y
! k

An
m2k

2
2

2k2n2k2m2
1k

1
1

1k1n1k1m1 




  

!r 

z1

cd1

c1d

h

rh,

2

r

rh,jj

2P

12Nj

jD

rh,jj

2Q

12Mj

jC

rh,jj

2N

1j
rh,jj

2M

hj
1j


















  

 



























 









1P11Njja
1N1,jAjja11h1rh,2h2k2b1k1bu

11hmrh,2h2k2b1k1bu
1Q1,MjBjjb

1M1,jj(b
h

111N1M

11Q11P 2

z
H



 

                                       …(15) 
with the help of (14) and (11), we arrive at the right hand 

side of desired result. 

 

 

                   IV. EXPANSION FORMULA 
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where all the conditions of (5) are satisfied. 

Proof: Using (12) and (15) in (11), we arrive at the 

expansion formula 
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is Jacobi polynomial [10, p.68, eq. 

(4.3.2)] and also 
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Ln
L (x) is Leguerre Polynomial [10, p.101, eq. 

(5.1.6)] and we get 
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 then it reduces to Fox H-function and 

Q)1,...,  j ; P1,...,  i ( C
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 it reduces 

to the well known Meijer’s G-function by [9] in (12) 

then we get a known result given in [1]. 

 On applying the same procedure as above in 

(16) , then we can establish the other known results. 
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