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Abstract - In this paper, first we evaluate a finite
integral involving general class of polynomials and the

product of two H -functions and then we make its
application to solve boundary value problem on heat
conduction in a rod under the certain conditions and
further we establish an expansion formula involving

about product of H -function. In view of generality of

the polynomials and products of H -function occurring
here in, on specializing the coefficients of polynomials
and parameters of the H -function, our results would
readily reduce to a large number of results involving
known class of polynomials and simpler functions.
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|. INTRODUCTION
The general class of polynomials introduced by
Shrivastava [7] and defined by [8] and [10] as follows:
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where m is an arbitrary positive integer the coefficient
Ank (n,k > 0) are arbitrary constants, real or complex.

H -function will be defined and represented as
follows [2] and [4]:
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and also the H -function occurring in the paper was
introduced by Inayat-Hussain [4] and studied by
Bushman and Shrivastava [2]. The following series

representation for the H -function was obtained by
Rathie [5]
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The nature of contour L and series of various conditions

on its parameters can be seen in the paper by Bushman

and Shrivastava [2]. We shall also make use of the
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following behaviour of the H [Z] function for
PQ

small value of f(z) as recorded by Saxena [6, p.112,
eq.(2.3) and (2.4)]
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The following more general conditions given by
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I1. MAIN INTEGRAL
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Proof : To establish the above integral (5), we first express

both the general class of polynomials and

H [Z] occurring in its left hand side in their
P5.Qo

respective series forms with the help of equation (1) and (3)

respectively and then interchange the order of integration
and summation (which is permissible under the condition
stated) and using (3) and with the help of x-integral given by
Gradshteyn, I.S. and Ryzhik [3]. Then we substitute the

above (&) with the help of (4) and reinterpret the result

thus in terms of H -function, we arrive at the right hand
side of desired results (5).
I1l. MAIN PROBLEM

Problem of heat conduction in a rod with one end
held at zero temperature and the other end exchanges heat
freely with the surrounding medium at zero temperature. If
the thermal coefficients are constants and there are no
source of thermal energy, then temperature in a one-
dimensional rod 0 < x < L satisfies the following heat
equation
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In view of the problem, the solution of this partial
differential equation satisfy the boundary conditions
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The initial condition
0 (x,0) =f(x) ...(10)

The solution of partial differential equation (6) can be
written as [11, p.77,(4)]
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The solution of the problem to be obtained is
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Jnd

valid under the condition of (5).
Proof: The solution of the problem stated is given as
[11,p.77, (4]
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Multiplying both sides of (13) bySin KmT and

integrate with respect to x from 0 to L, we get
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and using (5) and orthogonality property [12, p.28] by

Szego, we obtain
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with the help of (14) and (11), we arrive at the right hand

side of desired result.

IV. EXPANSION FORMULA
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where P (X) is Jacobi polynomial [10, p.68, eq. On applying the same procedure as above in
n .
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