τ* Generalized Preclosed Sets In Topological Spaces

¹C.Aruna, ²R.Selvi

¹Sri Parasakthi College for Women, Courtallam – 627802. ²Matha College of Arts & Science, Manamadurai – 630606. rajlakh@gmail.com

Abstract— In this paper, we introduce a new class of sets called -generalized preclosed sets and -generalized preopen sets in topological spaces and study some of their properties.

Index terms- $\frac{\tau^* - gp - closed}{I. \text{ INTRODUCTION}} \text{ set}$

In 1970, Levine[6] introduced the concept of generalized closed sets as a generalization of closed sets in topological spaces. Using generalized closed sets, Dunham[5] introduced the concept of the closure operator c1* and a new topology τ^* and studied some of their properties. P.Bhattacharyya and B.K.Lahiri[3], J.Dontchev[4], H.Maki, R.Devi and K.Balachandran[9], [10], P.Sundaram and A.Pushpalatha[12], A.S.Mashhour, M.E.Abd E1-Monsof and S.N.E1-Deeb[11], D.Andrijevic[1] and S.M.Maheshwari and P.C.Jain[9], Ivan Reilly [13], A.Pushpalatha, S.Eswaran and P.RajaRubi [14] introduced and investigated generalized semi closed sets, semi generalized closed sets, generalized semi preclosed sets, α -generalized closed sets, generalized- α closed sets, strongly generalized closed sets, preclosed sets, semi-preclosed sets and α -closed sets, generalized preclosed sets and τ^* -generalized closed sets respectively. In this paper, we obtain a new generalization of preclosed sets in the weaker topological space(X, τ^*).

Throughout this paper X and Y are topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset A of a topological space X, int(A), cl(A), $cl^*(A)$, scl(A), spcl(A), $cl_n(A)$, $cl_n(A)$ and

 A^c denote the interior, closure, $closure^+$, semi-closure, semi-preclosure, α -closure, preclosure and complement of A respectively.

2.Preliminaries:

We recall the following definitions

Definition: 2.1

A subset A of a topological space (X, τ) is called

(i) Generalized closed (briefly g-closed)[6] if $cl(A)\subseteq G$ whenever $A\subseteq G$ and G is open in X

- (ii) Semi-generalized closed(briefly sg-closed)[3] if scl(A)⊆G whenever A⊆G and G is semi open in X.
- (iii) Generalized semi-closed (briefly gs-closed)[2] if scl(A)⊆G whenever A⊆G and G is open in X.
- (iv) α closed[8] if cl(int(cl(A))) \subseteq A
- (v) α -generalized closed (briefly αg -closed)[9] if $\mathcal{C}l_{\alpha}(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.
- (vi) Generalized α -closed (briefly $g\alpha$ -closed)[10] if $spcl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.
- (vii) Generalized semi-preclosed (briefly gsp-closed)[2] if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.
- (viii) Strongly generalized closed (briefly strongly g-closed)[12] if $cl(A) \subseteq G$ whenever

 $A \subseteq G$ and G is g-open in X.

- (ix) Preclosed[11] if $cl(int(A)) \subseteq A$
- (x) Semi-closed[7] if $int(cl(A)) \subseteq A$
- (xi) Semi-preclosed (briefly sp-closed)[1] if $int(cl(int(A))) \subseteq A$.
- (xii) Generalized preclosed (briefly gp-closed)[13] if $cl_p A \subseteq G$ whenever $A \subseteq G$ and G is open.

The complements of the above mentioned sets are called their respective open sets.

Definition: 2.2

For the subset A of a topological X, the generalized closure operator $\mathcal{C}l^*[5]$ is defined by the intersection of all g-closed sets containing A.

Definition: 2.3

For the subset A of a topological X, the topology τ^* is defined by $\tau^* = \{G: cl^*(G^c) = G^c\}$.

Definition: 2.4

For the subset A of a topological X,

(i) the semi-closure of A(briefly scl(A))[7] is defined as the intersection of all semi-closed sets containing A.

www.ijtra.com Volume 4, Issue 4 (July-Aug, 2016), PP. 99-103

- (ii) the semi-Pre closure of A(briefly spcl(A))[1] is defined as the intersection of all semi-preclosed sets containing A.
- (iii) the $\alpha closure$ of A $(briefly cl_{\alpha}(A))[8]$ is defined as the intersection of all $\alpha closed$ sets containing A.
- (iv) the preclosure of A, denoted by $\mathfrak{cl}_p(A)[13]$, is the smallest preclosed set containing A.

Definition: 2.5

A subset A of a topological space X is called τ^* generalized closed set $(briefly \tau^* - gclosed)[14]$ if $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is $\tau^* - open$. The complement of $\tau^* - generalized$ closed set is called the $\tau^* - generalized$ open set $(briefly \tau^* - g - open)$.

3. τ^* – *Generalized* Preclosed Sets In Topological

Spaces

In this section, we introduce the concept of τ^* - generalized preclosed sets in topological spaces.

Definition: 3.1

A subset A of a topological space X is called $\tau^*-generalized$ preclosed $(briefly\ \tau^*-gp-closed)$ if $cl^*(cl_p(A))\subseteq G$ whenever $A\subseteq G$ and G is τ^*- open. The complement of $\tau^*-generalized$ preclosed set is called the $\tau^*-generalized$ preopen set (briefly $\tau^*-gp-open$).

Example: 3.2

Let $X = \{a, b, c\}$ and let $\tau = \{\phi, X, \{a\}, \{a, b\}, \{c\}, \{a, c\}\}$. Here (X, τ^*) is τ^* -generalized preclosed

Theorem: 3.3

Every closed set in X is $\tau^* - gp - closed$.

Proof:

Let A be a closed set. Let $A \subseteq G$. Since A is closed, $cl(A) = A \subseteq G$. But $cl^*(cl_p(A)) \subseteq cl(A)$. Thus, we have $cl^*(cl_p(A)) \subseteq G$ whenever $A \subseteq G$ and G is $\tau^* - open$. Therefore A is $\tau^* - gp - closed$.

Theorem: 3.4

Every $\tau^* - closed$ set in X is $\tau^* - gp - closed$.

Proof:

Let A be a $\tau^*-closed$ set. Let $A\subseteq G$ where G is τ^*-open Since A is $\tau^*-closed$, $cl^*(A)=A\subseteq G$. Thus, we have $cl^*\Big(cl_p(A)\Big)\subseteq G$ whenever $A\subseteq G$ and G is τ^*-open . Therefore A is τ^*-gp closed.

Theorem: 3.5

Every g-closed set in X is a τ^* -gp-closed set but not conversely.

Proof:

Let A be a g-closed set. Assume that $A \subseteq G$, G is $\tau^* - open$ in X. Then $cl(A) \subseteq G$, Since A is g-closed. But $cl^* \Big(cl_p(A) \Big) \subseteq cl(A)$. Therefore $cl^* (cl_p(A)) \subseteq G$. Hence A is $\tau^* - gp - closed$.

The converse of the above theorem need not be true as seen from the following example.

Example: 3.6

Consider the topological space $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{a, b\}, \{c\}, \{a, c\}\}$. Then, the set $\{a, c\}$ is $\tau^* - gp$ -closed but not g-closed.

Remark: 3.7

The following example shows that $\tau^* - gp - closed$ sets are independent from sp-closed, sg-closed set, $\alpha - closed$ set, preclosed set, gs-closed set, gsp-closed set, $\alpha g - closed$ set and $g\alpha - closed$ set.

Example: 3.8

Let $X = \{a, b, c\}$ and $Y = \{a, b, c, d\}$ be the topological spaces.

- (i) Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the sets $\{a\}, \{a, b\}$ and $\{a, c\}$ are $\tau^* gp closed$ but not speciosed.
- (ii) Consider the topology $\tau = \{X, \phi, \{a, b\}\}$. Then the sets $\{a\}$ and $\{b\}$ are sp-closed but not $\tau^* gp closed$.
- (iii) Consider the topology $\tau = \{X, \phi\}$. Then the sets $\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}$ and $\{a, c\}$ are $\tau^* gp closed$ but not sg-closed.
- (iv) Consider the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then the sets $\{a\}$ and $\{b\}$ are sg-closed but not $\tau^* gp closed$.
- (v) Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the sets $\{a\}, \{b\}, \{c\}, \{a, b\}$ and $\{a, c\}$ are $\tau^* gp closed$ but not $\alpha closed$.
- (vi) Consider the topology $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Then the set $\{b\}$ is $\alpha closed$ but not $\tau^* gp closed$.
- (vii) Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the sets $\{a\}\{a,b\}$ and $\{a,c\}$ are $\tau^* gp closed$ but not preclosed.

www.ijtra.com Volume 4, Issue 4 (July-Aug, 2016), PP. 99-103

(viii) Consider the topology $\tau = \{X, \phi, \{b\}, \{a, b\}\}$. Then the set $\{a\}$ is pre-closed but not $\tau^* - gp - closed$.

(ix) Consider the topology $\tau = \{X, \phi\}$. Then the sets $\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\} \text{ and } \{a, c\}$ are $\tau^* - gp - closed$ but not gs-closed.

(x) Consider the topology

 $\tau = \{Y, \phi, \{a\}, \{a, b, c\}, \{a, b, d\}\}$ Then the sets $\{b\}\{b, c\}$ and $\{b, d\}$ are gs - closed but not $\tau^* - gp$ -closed.

(xi) Consider the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then the sets $\{b\}$ and $\{a, b\}$ are gsp - closed but not $\tau^* - gp$ -closed.

(xii) Consider the topology $\tau = \{Y, \phi, \{a\}\}$. Then the set $\{a\}$ is $\tau^* - gp - closed$ but not gsp-closed.

(xiii) Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the set $\{a\}$ is $\tau^* - gp - closed$ but not $\alpha_{g-closed}$.

(xiv)Consider the topology

 $\tau = \{Y, \phi, \{a\}, \{a, b, c\}, \{a, b, d\}\}$. Then the set

 $\{b\},\{b,c\},\{b,d\}$ are $\alpha g-closed$ but

not $\tau^* - gp - closed$.

(xv) Consider the topology

 $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\}.$ Then the set $\{b\}$ is $\tau^* - gp - closed_{\text{but not }g}\alpha - closed.$

(xvi)Consider the topology $\tau = \{Y, \phi, \{a\}, \{a, b, c\}, \{a, b, d\}\}$. Then the set $\{b\}, \{b, c\}$ and $\{b, d\}$ are $g\alpha - closed$ but not $\tau^* - gp - closed$.

Theorem: 3.9

For any two sets A and B

$$cl^*(cl_p(A \cup B)) = cl^*(cl_p(A)) \cup cl^*(cl_p(B))$$

Proof:

Since $A \subseteq A \cup B$, we have

$$cl^*\Big(cl_p(A)\Big) \subseteq cl^*\Big(cl_p(A \cup B)\Big) \quad \text{and} \quad \text{Since} \\ B \subseteq A \cup B \text{, we have } cl^*\Big(cl_p(B)\Big) \subseteq cl^*\Big(cl_p(A \cup B)\Big). \\ \text{Therefore} \quad cl^*\Big(cl_p(A)\Big) \cup cl^*\Big(cl_p(B)\Big) \subseteq \\ cl^*\Big(cl_p(A \cup B)\Big). \quad \text{Also, } cl^*\Big(cl_p(A)\Big) \text{ and } cl^*\Big(cl_p(B)\Big) \\ \text{are the closed sets.}$$

Therefore $cl^*(cl_p(A)) \cup cl^*(cl_p(B))$ is also a closed set. Again, $A \subseteq cl^*(cl_p(A))$ and $B \subseteq cl^*(cl_p(B))$,

Implies $\bigcup B \subseteq cl^*(cl_p(A)) \cup cl^*(cl_p(B))$. Thus, $cl^*(cl_p(A)) \cup cl^*(cl_p(B))$ is a closed set containing $A \cup B$. Since $cl^*(cl_p(A \cup B))$ is the smallest closed set containing $A \cup B$. We have

$$\begin{split} &cl^*\Big(cl_p(A\cup B)\Big)\subseteq \ cl^*\Big(cl_p(A)\Big) \cup \ cl^*\Big(cl_p(B)\Big),\\ &\text{Thus, } cl^*\Big(cl_p(A\cup B)\Big)= \ cl^*\Big(cl_p(A)\Big) \cup \ cl^*\Big(cl_p(B)\Big). \end{split}$$

Theorem: 3.10

Union of two $\tau^* - gp - closed$ sets in X is a $\tau^* - gp - closed$ set in X.

Proof:

Let A and B be two $\tau^* - gp - closedsets$. Let $A \cup B \subseteq G$, where G is $\tau^* - open$. Since A and B are $\tau^* - gp - closedsets$, $cl^* \Big(cl_p(A) \Big) \cup cl^* \Big(cl_p(B) \Big) \subseteq G$. But by theorem 3.12 $cl^* \Big(cl_p(A) \Big) \cup cl^* \Big(cl_p(B) \Big) = cl^* \Big(cl_p(A \cup B) \Big)$. Ther efore $cl^* \Big(cl_p(A \cup B) \Big) \subseteq G$. Hence $A \cup B$ is a $\tau^* - gp - closed$ set.

Theorem: 3.11

A subset A of X is $\tau^* - gp - closed$ if and only if $cl^*(cl_p(A)) - A$ contains no non-empty $\tau^* - closed$ set in X

Let A be a $\tau^* - gp - closed$ set. Suppose that F is a non-

Proof:

empty $\tau^*-closed$ subset of $cl^*\left(cl_p(A)\right)-A$. Now, $F\subseteq cl^*\left(cl_p(A)\right)-A$. Then $F\subseteq cl^*\left(cl_p(A)\right)\cap A^c$. Since $cl^*\left(cl_p(A)\right)-A=cl^*\left(cl_p(A)\right)\cap A^c$. Therefore $F\subseteq cl^*\left(cl_p(A)\right)$ and $F\subseteq A^c$. Since F^c is a τ^* -open set and A is a $\tau^*-gp-closed$, $cl^*\left(cl_p(A)\right)\subseteq F^c$. That is $F\subseteq cl^*\left(cl_p(A)\right)\cap [cl^*\left(cl_p(A)\right)]^c=\phi$. That is $F=\phi$, a contradiction. Thus, $cl^*\left(cl_p(A)\right)-A$ contain no nonempty $\tau^*-closed$ set in X. Conversely, assume that $cl^*\left(cl_p(A)\right)-A$ contains no non-empty $\tau^*-closed$ set. Let $A\subseteq G$, G is τ^*-open . Suppose that $cl^*\left(cl_p(A)\right)$ is

www.ijtra.com Volume 4, Issue 4 (July-Aug, 2016), PP. 99-103

not contained in G. then $cl^*\left(cl_p(A)\right)\cap G^c$ is a non-empty $\tau^*-closed$ set of $cl^*\left(cl_p(A)\right)-A$ which is a contradiction. Therefore, $cl^*\left(cl_p(A)\right)-A\subseteq G$ and lence A is $\tau^*-gp-closed$.

Corollary: 3.12

A subset A of X is $\tau^* - gp - closed$ if and only $cl^*(cl_p(A)) - A$ contains no non-empty closed set in X.

Proof.

The proof follows from the theorem 3.11 and the fact that every closed set is $\tau^* - closed$ set in X.

Corollary: 3.13

A subset A of X is $\tau^* - gp - closed$ if and only if $cl^*(cl_p(A)) - A$ contains no non-empty open set in X.

Proof:

The proof follows from the theorem 3.11 and the fact that every open set is $\tau^* - open$ set in X.

Theorem: 3.14

If a subset A of X is $\tau^* - gp - closed$ and $A \subseteq B \subseteq cl^*(cl_p(A))$, then B is $\tau^* - gp - closed$ set in X.

Proof:

Let A be a $\tau^*-gp-closed$ set such that $A\subseteq B\subseteq cl^*\Big(cl_p(A)\Big)$. Let U be a τ^*-open set of X such that $B\subseteq U$. Since A is $\tau^*-gp-closed$, we have $cl^*\Big(cl_p(A)\Big)\subseteq U$.

Now,

$$\begin{split} &cl^*\Big(cl_p(A)\Big)\subseteq \ cl^*\Big(cl_p(B)\Big)\subseteq \ cl^*\Big(cl^*(cl_p(A))\Big)=\ cl^*\Big(cl_p(A)\Big)\subseteq U\\ &\text{That is } cl^*\Big(cl_p(B)\Big)\subseteq U,\ \text{U is } \tau^*-open. \end{split}$$

Therefore B is $\tau^* - gp - closed$ set in X.

The converse of the above theorem need not be true as seen from the following example.

Example: 3.15

Consider the topological space $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Let $A = \{c\}$ and $B = \{b, c\}$. Then A and B are $\tau^* - gp - closed$ sets in (X, τ) . But $A \subseteq B$ is not a subset of $cl^*(cl_p(A))$.

Theorem: 3.16

Let A be a $\tau^*-gp-closed$ in (X,τ) . Then A is g-closed if and only if $cl^*\Big(cl_p(A)\Big)-A$ is τ^*-open .

Proof:

Suppose A is g-closed in X. Then, $cl^*\left(cl_p(A)\right) = A$ and so $cl^*\left(cl_p(A)\right) - A = \phi$ which is $\tau^* - open$ in X. Conversely, suppose $cl^*\left(cl_p(A)\right) - A$ is $\tau^* - open$ in X. Since A is $\tau^* - gp - closed$, by the theorem 3.11, $cl^*\left(cl_p(A)\right) - A$ contains no non-empty $\tau^* - closed$ set in X. Then, $cl^*\left(cl_p(A)\right) - A = \phi$. Hence, A is g-closed.

Remark 3.17

From the above discussion, we obtain the following implications.

Closed g-closed $\tau^* - closed$

A → B means A implies B, A → B means A does not imply B and A → B means A and B are independent.

REFERENCES

- [1] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- [2] S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J.Pure Appl.Math., 21(1990), 717-719.
- [3] P.Bhattacharyya and B.K.Lahiri, Semi generalized closed sets in topology, Indina J.Math., 29(1987), 375-382.
- [4] J.Dontchev, On generalizing semipreopen sets, Mem, Fac. Sci. Kochi Uni. Ser A, Math., 16(1995), 35-48.
- [5] W.Dunham, A new closure operator for non-T1 topologies, Kyungpook Math.J.22(1982),55-60.
- [6] N.Levine, Generalized closed sets in topology, Rend.Circ.Mat.Palermo, 19,(2)(1970),89-86.
- [7] N.Levine, Semi-open sets and semi-continuity in topological spaces Amer.Math.Monthly; 70(1963),36-41.

- [8] S.N.Maheswari and P.C.Jain, Some new mappings, Mathematica, Vol.24(47) (1-2)(1982), 53-55.
- [9] H.Maki, R.Devi and K.Balachandran, Assicated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ.(Math).15(1994),51-63.
- [10] H.Maki, R.Devi and K.Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Uni., Ed.Part III,42(1993), 13-21.
- [11] A.S.Mashhour, M.E.Abd E1-Monesf and S.N.E1-Deeb, On precontinuous and weak precontinuous functions, Proc.Math.Phys. Soc.Egypt 53 (1982),47-53.

- [12] P.Sundaram, A.Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J.Math. Sci.(FJMS) 3(4)(2001), 563-575.
- [13] Ivan Reilly, Generalized Closed Sets: A survey of recent work, Auckland Univ. 1248, 2002(1-11).
- [14] A.Pushpalatha, S.Eswaran and P.RajaRubi, generalized closed sets in topological spaces, WCE 2009, July 1-3, 2009, London, U.K.