
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 4, Issue 5 (Sept - Oct, 2016), PP 88-92

88| P a g e

Dynamic Query Forms for Database Queries
1 Miss. Minal A. Deshmukh,2Prof. A. B. Deshmukh

1Computer Science and Engineering and perceiving masters in Information Technology,
2Dept. of Computer Science and Engineering Sipna College of Engineering and Technology, Amravati

1minal2392.d@gmail.com

Abstract— Modern scientific databases and web databases

maintain large and heterogeneous data. These real-world

databases contain over hundreds or even thousands of

relations and attributes. Traditional predefined query

forms are not able to satisfy various ad-hoc queries from

users on those databases. This paper proposes, a novel

database query form interface, which is able to

dynamically generate query forms. The essence of DQF is

to capture a user’s preference and rank query form

components, assisting him/her to make decisions. The

generation of a query form is an iterative process and is

guided by the user. At each iteration, the system

automatically generates ranking lists of form components

and the user then adds the desired form components into

the query form. The ranking of form components is based

on the captured user preference. A user can also fill the

query form and submit queries to view the query result at

each iteration. In this way, a query form could be

dynamically refined till the user satisfies with the query

results.

Keywords: DQF, Heterogenous data, Query Form, User

Interaction, Query Form Generation.

I. INTRODUCTION

Query form is one of the most widely used user interfaces

for querying databases. Traditional query forms are designed

and predefined by developers or DBA in various information

management systems. With the rapid development of web

information and scientific databases, modern databases

become very large and complex. A database is only as

functional as query interface allows it to be. If a user is not

capable to communicate to the database what he or she wishes

from it, even the richest data store provides petite or no value.

Writing well-structured queries, in languages such as SQL and

XQuery, can be challenging due to a number of reasons,

including the user’s lack of familiarity with the query

language and the user’s ignorance of the underlying schema.

A form based query interface, which only requires filling

blanks to identify query parameters, is precious since it helps

make data users with no knowledge of official query

languages or the database schema. In practice, form-based

interfaces are used frequently, but usually each form is

designed in an ad-hoc way and its applicability is restricted to

a small set of fixed queries.

Many existing database management and development

tools, such as EasyQuery [1], Cold Fusion [2], SAP provide

several mechanisms to let users create customized queries on

databases. Here, the creation of customized queries totally

depends on users’ manual editing [3] which leads to users’

confusion because they being non- technical are not familiar

with the database schema. Query form is one of the majority

used user interfaces for querying databases. Traditional query

forms are designed and predefined by developers or DBA in

various information management systems. With the rapid

development of web information and scientific databases,

modern databases become very large and complex. Dynamic

question type system: DQF, a question interface that is

capable of dynamically generating question forms for users.

Different from ancient document retrieval, users in

information retrieval area unit usually willing to perform

several rounds of actions (i.e., refinement question conditions)

before distinctive the final candidates. The essence of DQF is

to capture user interests throughout user interactions and to

adapt the question type iteratively. Every iteration consists of

2 sorts of user interactions: it contains only a few primary

attributes of the information. The essential question type is

then enriched iteratively via the interactions between the user

and our system till the user is satisfying with the question

results.

II. LITERATURE REVIEW

How to let non-expert users make use of the relational

database is a challenging topic. A lot of research works focus

on database interfaces which assist users to query the

relational database without SQL. Current studies and works

mainly focus on how to generate the query forms.

1. Customized Query Form: M. Jayapandian and H.

V. Jagadish [4] proposed a system which allows end-users

to customize the existing query form at run time. They provide

visual interfaces for developers to create or customize query

forms. The problem of those tools is that, they are provided

for the professional developers who are familiar with their

databases, not for end-users.

2. Automatic Static Query Form: Recently, [5] [7]

proposed automatic approaches to generate the database query

forms without user participation. [5] presented a data-driven

method. It first finds a set of data attributes, which are most

likely queried based on the database schema and data

instances. Then, the query forms are generated based on the

selected attributes.

3. Auto completion for Database Queries: In [8], [9],

novel user interfaces have been developed to assist the user to

type the database queries based on the query workload, the

data distribution and the database schema. Different from our

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 4, Issue 5 (Sept - Oct, 2016), PP. 73-77

89 | P a g e

work which focuses on query forms, the queries in their work

are in the forms of SQL and keywords.

4. Query Refinement: Query refinement is a common

practical technique used by most information retrieval

systems. It recommends new terms related to the query or

modifies the terms according to the navigation path of the user

in the search engine. But for the database query form, a

database query is a structured relational query, not just a set

of terms.

5. Database Query Recommendation: In this approach,

[10] [11] treat SQL queries as items in the collaborative

filtering approach, and recommend similar queries to

related users.

However, they do not consider the goodness of the query

results.

6. Dynamic Data Entry Form: K. Chen, H. Chen, N.

Conway, J. M. Hellerstein, and T. S. Parikh. Usher [12]

develops an adaptive forms system for data entry, which can

be dynamically changed according to the previous data input

by the user. Our work is different as we are dealing with

database query forms instead of data-entry forms.

7. Active Feature Probing: Zhu et al. [13] develop the

active featuring probing technique for automatically

generating clarification questions to provide appropriate

recommendations to users in database search. Different from

their work which focuses on finding the appropriate questions

to ask the user, DQF aims to select appropriate query

components.

III. ANALYSIS OF PROBLEM

A. Existing system:

With the rapid development of web information and

scientific databases, modern databases become very large and

complex. In natural sciences, such as genomics and diseases,

the databases have over hundreds of entities for chemical and

biological data resources. Many web databases, such as

Freebase and DBPedia, typically have thousands of structured

web entities. Therefore, it is difficult to design a set of static

query forms to satisfy various ad-hoc database queries on

those complex databases.

B. Disadvantages of existing system:

 However, the creation of customized queries totally

depends on users’ manual editing. If a user is not familiar with

the database schema in advance, those hundreds or thousands

of data attributes would confuse him/her.

C. Proposed system:

In this paper, we propose a Dynamic Query Form system:

DQF, a query interface which is capable of dynamically

generating query forms for users. Different from traditional

document retrieval, users in database retrieval are often

willing to perform many rounds of actions related to the

database.

Fig 1: Home page

Modules:

1. DBA

2. User

3. Databases

The working of each of the above modules is as follow:

1. DBA (Database Administrator):

The DBA is responsible for executing all the complex queries

that non-technical people or users are unable to perform. His

other main functnality is to approve the new user request who

wants to create an account on this site to store his data. Along

with this, he has the authority to give some certain different

permission to the new user or he can also update the

permissions he has given to any of the users on this site.

Fig 2: DBA’s Account

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 4, Issue 5 (Sept - Oct, 2016), PP. 73-77

90 | P a g e

2 User:

User can either be a technical person or a non-technical

Person as well. For a technical person it is very easy to deal

with the database and all of its queries but a non-technical one

finds it quite difficult to deal with the database and its queries.

So, we have provided an interactive and very user friendly

platform for users to deal with database and to store or retrieve

their data from database. User can login in to our site through

the new user request button. Once a new user created his

account on the site and it is get approved by the DBA, new

user will get a mail of his user d and password of his main

account and also n other mail of his database’s user id and

password in his mailbox. After getting all the above details, he

can then deal with his account as well as the database in which

he can store his data.

Fig 3: User Account

3. Databases:

Database is a place where any user can store his data or

information into it. Database is one of the most used storage

mediums . Different database queries are available to store,

retrieve, update or delete data from the database. Fig 4 shows

the login page of the database of a particular user from which

he can login into his database and can store his data in it.

Fig 4: Database login page

Once the user login into his database, he can perform some

certain operations with database. As we can see in the fig 5,

that the DBA has provided the user some permissions like to

create a table and a view as well. So, now, in this database, the

user can perform all the database operations he wants to

perform with or without the help of the DBA.

Fig 5: User’s Database

Password recovery is a must needed concept in any of the

systems. In case. A user forgets his password, he can recover

it back with the help of this password recovery function.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 4, Issue 5 (Sept - Oct, 2016), PP. 73-77

91 | P a g e

Fig 6: Password Recovery

Advantages of proposed system:

1) A dynamic query form system which generates the

query forms according to the user’s desire at run time. The

system provides a solution for the query interface in large

and complex databases.

2) The goodness of a query form is determined by the

query results generated from the query form. Based on this,

we rank and recommend the potential query form

components so that users can refine the query form easily.

IV. RESULTS AND DISSCUSION

The comparison gives us different systems with their

disadvantages which is shown in the following table.

CONCLUSION

This paper proposes a dynamic query form generation

approach which helps users dynamically generate query

forms. The key idea is to use a probabilistic model to rank

form components based on user preferences. We capture user

preference using both historical queries and run-time feedback

such as click through. Experimental results show that the

dynamic approach often leads to higher success rate and

simpler query forms compared with a static approach. The

ranking of form components also makes it easier for users to

customize query forms.

ACKNOWLEDGEMENT

I would like to thank my guide Prof. A. B. Deshmukh for

fulfilling my research work on DQF. Moreover I thank for the

facilities provided by Sipna College of Engineering and

Technology Amravati for providing me necessary article for

completing my study on this topic.

References

[1] EasyQuery. http://devtools.korzh.com/eq/dotnet/.

[2] ColdFusion.http://www.adobe.com/products/coldfusi

on/.

http://devtools.korzh.com/eq/dotnet/

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 4, Issue 5 (Sept - Oct, 2016), PP. 73-77

92 | P a g e

[3] M. Jayapandian and H. V. Jagadish. Automated

creation of a forms-based database query interface. In

Proceedings of the VLDB Endowment, pages 695–

709, August 2008.

[4] M. Jayapandian and H. V. Jagadish. Expressive query

specification through form customization. In

Proceedings of International Conference on

Extending Database Technology (EDBT), pages 416–

427, Nantes, France, March 2008.

[5] M. Jayapandian and H. V. Jagadish. Automated

creation of a forms-based database query interface. In

Proceedings of the VLDB Endowment, pages 695–

709, August 2008.

[6] M. Jayapandian and H. V. Jagadish. Expressive query

specification through form customization. In

Proceedings of International Conference on

Extending Database Technology (EDBT), pages 416–

427, Nantes, France, March 2008.

[7] M. Jayapandian and H. V. Jagadish. Automating the

design and construction of query forms. IEEE TKDE,

21(10):1389–1402, 2009.

[8] N. Khoussainova, Y. Kwon, M. Balazinska, and D.

Suciu. Snipsuggest: Context-aware autocompletion

for sql. PVLDB, 4(1):22–33, 2010.

[9] A. Nandi and H. V. Jagadish. Assisted querying using

instant response interfaces. In Proceedings of ACM

SIGMOD, pages 1156–1158, 2007.

[10] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis.

Query recommendations for interactive database

exploration. In Proceedings of SSDBM, pages 3–18,

New Orleans, LA, USA, June 2009.

[11] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y.

Kwon, and D. Suciu. A case for a collaborative

query management system. In Proceedings of CIDR,

Asilomar, CA, USA, January 2009.

[12] K. Chen, H. Chen, N. Conway, J. M. Hellerstein, and

T.S. Parikh. Usher: Improving data quality with

dynamic forms. In Proceedings of ICDE conference,

pages 321–332, Long Beach, California, USA, March

2010.

[13] S. Zhu, T. Li, Z. Chen, D. Wang, and Y. Gong.

Dynamic active probing of helpdesk databases. Proc.

VLDB Endow., 1(1):748–760, Aug. 2008.

[14] G. Soundararajan, D. Lupei, S. Ghanbari, A. D.

Popescu, J. Chen, and C. Amza. Dynamic resource

allocation for database servers running on virtual

storage. In FAST, 2009.

[15] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J.

Rittinger. Multi-tenant databases for software as a

service: Schema-mapping techniques. In SIGMOD,

2008.

[16] M. Hui, D. Jiang, G. Li, and Y. Zhou. Supporting

database applications as a service. In ICDE, 2009.

[17] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.

Automated ranking of database query results. In

CIDR, 2003.

