
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 117-120

117 | P a g e

DEVELOPMENT OF A METHODOLOGY TO

ESTIMATE THE EFFORT, QUALITY AND

CYCLE TIME FOR IMPROVING SOFTWARE

PROJECT MONITORING
Mohd Faizi, Prof. Dr. Shafeeq Ahmad

Azad Institute of Engineering Technology, Lucknow-226002

faizi406@gmail.com, ahmad_shafeeq@rediffmail.com

Abstract- The main scope of the paper is determining the

effectiveness of these techniques for plummeting rate of

software defects produce failures. The quality of software will

be found based on the quality, cycle time, effort, product size,

product complexity and schedule pressure. Developing

software to meet functional needs with acceptable levels of

quality, within budget, and on schedule, is a goal pursued by

every software development organization. Many organizations

are adopting the best practices in software development, such

as those based on Capability Maturity Model

I. INTRODUCTION

CMM has been one of the most popular efforts in

enhancing software quality and reducing development costs.

Although development effort, software quality, and cycle

time have been studied in prior research on software

estimation most of the published results are based on data

sets that are now considered outdated, due to various

technological innovations such as the use of object-oriented

languages, middleware, and newer tools and due to

increased adoption of best practices in software

development, that is, those based on CMM. There is a need

to re-examine relationships between software project

development outcomes and various factors identified from

prior literature.

The Capability Maturity Model

The Capability Maturity Model for software (CMM)

was developed by Software Engineering Institute to describe

the principles and practices underlying software process

maturity. Its aim is to help organizations improve their

software process maturity through an evolutionary path,

from ad hoc, chaotic to mature, and disciplined. CMM also

helps assess how well defined the software development

processes in an organization are. A well- defined process is

one that has readiness criteria, clear inputs and outputs,

probably some standards, and procedures for performing the

work (or separate phases). Moreover, there are also

verification mechanisms as well as completion criteria

(when it is completely “done”) for that process [6]. In

CMM-SW model, organizations at level 3 possess defined

processed.

The CMM is organized into 5 levels. Level 1 Initial is

where the software process is characterized as ad hoc, or

even chaotic in some cases. From level 2 to level 5, each

level consists of a set of key process areas (KPA) that an

organization should focus on to improve its software

process. Each key process area in turn comprises a set of key

practices that indicate if the implementation and

institutionalization of that area is effective, repeatable, or

lasting.

Figure 1

The Software Capability Maturity Model (SW-CMM)

provides a set of requirements that organizations can use in

setting up the software process used to control software

product development. The SW-CMM specifies “what”

should be in the software process but not “when” or “for

how long.” The SW-CMM has what is called a process

maturity framework. There are five levels of process

maturity, Level 1 (lowest) to Level 5 (highest). To be rated

at a specific level an Organization has to demonstrate

capabilities in a number of Key Process Areas (KPA)

associated with a specific SW-CMM level, Table 3.1. The

capabilities demonstrated in transitioning from lower levels

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 117-120

118 | P a g e

to higher levels are cumulative. In other words, a Level 3

Organization must demonstrate KPA capabilities from Level

2 and from Level 3.

The Process Maturity framework is presented in Table

3.1. All Organizations start at Level 1. This is called the

Initial level. At this level few processes are defined, and

success depends on individual effort. This makes the

software process unpredictable because it changes as work

progresses. Schedules, budgets, functionality, and product

quality are generally unpredictable.

To achieve Level 2 the organization demonstrates

capability in 6 KPA’s. A Level 2 Organization has basic

management processes established to track cost, schedule,

and functionality. Problems in meeting commitments are

identified when they arise. Software requirements and work

products developed to satisfy requirements are baselined and

their integrity is controlled. Software project standards are

defined and the organization ensures they are faithfully

followed. The project works with its subcontractors to

establish a strong relationship. The necessary process

discipline is in place to repeat earlier successes on projects

with similar applications. Level 2 is called the Repeatable

level.

A Level 3 Organization has demonstrated capabilities in

an additional 7 KPA’s. At this level the software process for

both management and engineering activities is documented,

standardized, and integrated into a standard software process

for the whole organization. Projects tailor the standard

software process to develop their own unique defined

software process. A well-defined process includes readiness

criteria, inputs, standards and procedures for performing the

work, verification mechanisms, outputs, and completion

criteria. Level 3 is called the Defined level.

A Level 4 Organization has added 2 more KPA’s to its

capabilities. At this level detailed measures of the software

process and product quality are collected. Projects achieve

control over their products and processes by narrowing the

variation in their process performance to fall within

acceptable quantitative boundaries. Both the process and

product are quantitatively understood and controlled. Level

4 is called the Managed level.

At Level 5 an Organization has capabilities in 3 more

KPA’s and is in a continuous improvement state. Continuous

process improvement is enabled by quantitative feedback

from the process and from piloting innovative ideas and

technologies. Software project teams analyze defects to

determine their causes. Processes are evaluated to prevent

known types of defects from recurring, and lessons learned

are disseminated to other projects. Level 5 is called the

Optimizing level.

II. PROPOSED METHOD

In this research work we aimed to achieve followings:

 Effort, quality and cycle time estimation

 Identify the key project factor for CMM level 5

projects

 Study of CMM 5 projects

Effort, quality and cycle time estimation

We developed an application program to estimate the Effort,

quality and cycle time in C# using .Net environment. The flow of

this developed application is as follows:

Figure 3.1 : Effort and Cycle time calculation

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 117-120

119 | P a g e

III. IDENTIFICATION OF KEY PROJECT

FACTORS

A. SW-CMM Key Process Areas

Each KPA has a set of goals, capabilities, key practices,

measurements and verification practices. The goals and key

practices are the most interesting of these because they could

be used to assess the impact of a KPA on a project

development effort as shown in Figure 2. The goals state the

scope, boundaries, and intent of a KPA. A key practice

describes “what” should happen in that KPA. There are a

total of 52 goals and 149 key practices.

Figure 3. KPA Structure

As an illustration the goals of one KPA from Level 2,

Software Project Planning, are given. The purpose of

Software Project Planning is to establish reasonable plans for

performing the software engineering and for managing the

software project. Software Project Planning involves

developing estimates for the work to be performed,

establishing the necessary commitments, and defining the

plan to perform the work.

B. Candidate Predictor Variables

Most analyses identify four areas that influence software

development effort. Predictor variables that represent four

influential areas are used as inputs into the Research Model.

These predictor variables are also in the COCOMO II cost

model and they are regrouped into the four areas in Figure

.3.

Figure 4. Effort Influencing Areas

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 117-120

120 | P a g e

The next four subsections are a list of COCOMO II predictor

variables that support the four areas shown in Figure 3

C. Product Characteristics

The Product characteristics can have a large impact on

effort. Product characteristics include size, amount of

required software reuse, required reliability, complexity,

storage and time constraints, and the stability of the

underlying infrastructure on which the software relies.

D. Development Process

The Development Process directs the activities of the

developers, quality assurance personnel, and project

management. Activities include SW-CMM-oriented

practices such as requirements management, product design,

coding, unit testing, integration and test, configuration

management, quality assurance, and peer reviews. Although

the SW-CMM specifies a progression on KPAs to attain

higher maturity levels, organizations may practice some of

the KPAs in all of the levels.

E. Environment Factors

The Environment factors that affect effort are technology

insertion (such software engineering methods and tools),

facilities, and work conditions (such as multi-site

development or development schedule compression).

Table 1. Environmental-related Predictor Variables

Predictor Variable Symbol Description

Development

Flexibility

FLEX This is the required conformity to development standards and

constraints such as rigid schedules or performance

requirements. It accounts for the extra effort needed to follow

rigid and inflexible software development standards and

constraints.

Use of software tools TOOL Use of Software Tools rates the use of tools in making the

software development more efficient.

Multi-site

development

SITE This accounts for the extra effort needed to coordinate and

integrate development activities that are not co-located and do

not have access to wideband electronic communication

facilities.

Table 2. Environmental-related Predictor Variables

Platform volatility PVOL Platform Volatility is a rating of the frequency of change in the

complex of hardware and software that the product calls upon

to do its work.

Required

development

schedule

SCED Required Development Schedule measures the schedule

constraint imposed on the project team developing the

software, e.g. schedule compression.

IV. CONCLUSION

The main scope of the project is determining the

effectiveness of these techniques for plummeting rate of

software defects produce failures. The quality of software will

be found based on the quality, cycle time, effort, product size,

product complexity and schedule pressure. Developing

software to meet functional needs with acceptable levels of

quality, within budget, and on schedule, is a goal pursued by

every software development organization. Many organizations

are adopting the best practices in software development, such

as those based on Capability Maturity Model.

REFERENCES

[1] Lami G., Falcini F. (2009). Is ISO/IEC 15504 applicable to

agile methods? XP 2009. LNBIP 31, pp. 130-135.

[2] McMichael B., Lombardi M. (2007). ISO 9001 and Agile

Development, IEEE Agile. [9] Paulk M. (2001). XP from a

CMM perspective. IEEE Software, 18 (6), pp. 19-26.

[3] Pikkarainen M., Mantyniemi A. (2006). An approach for

using CMMI in Agile software development assessments:

experiences from three case studies. SPICE 2006 conference.

[4] Santana C., Gusmao C., Soares L., Pinheiro C., Maciel T.,

Vasconcelos A., Rouiller A. (2009). Agile software

development and CMMI: What we do not know about

dancing with elephants. XP 2009, LNBIP 31, pp. 124-129.

[5] Stalhane T., Hanssen G. K. (2008). The application of ISO

9001 to Agile Software Development. PROFES 2008, pp.

371-385.

[6] Sutherland J., Jakobsen C., Johnson K. (2007). Scrum and

CMMI Level 5: The Magic Potion for Code Warriors. In:

Proceedings of the Agile Development Conference, pp. 466

– 471.

[7] Agrawal M., Chari K. (2007). Software effort, quality, and

cycle time: a study of CMM level 5 projects. IEEE

Transactions on software engineering, 33(3), pp. 145-156.

[8] Paulk. M.C., Weber C.V., Curtis B., Chrissis M.B. (1995).

The Capability Maturity Model: Guidelines for improving

the software process. Addison-Wesley Publishing Company

(Reading book)

[9] Racheva Z., Daneva M., Sikkel K. (2009). Value creation by

agile projects: methodology or mystery? 10th International

Conference on Product-Focused Software Process

Improvement (PROFES 2009), pp. 141-155.

[10] Kauppinen M., Savolainen J., Lehtola L., Komssi M.,

Tohonen H., Davis A. (2009). From feature development to

customer value creation. IEEE International requirements

engineering conference 17th, pp. 275-280.

[11] Barney S., Aurum A., Wohlin C. (2008). A product

management challenge: Creating software product value

through requirements selection. Journal of Systems

Architecture, 54, pp. 576-593.

