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Abstract— The automation of fault detection in material 

science is getting popular because of less cost and time. Steel 

plates fault detection is an important material science problem. 

Data mining techniques deal with data analysis of large data. 

Decision trees are very popular classifiers because of their simple 

structures and accuracy. A classifier ensemble is a set of 

classifiers whose individual decisions are combined in to classify 

new examples. Classifiers ensembles generally perform better 

than single classifier. In this paper, we show the application of 

decision tree ensembles for steel plates faults prediction. The 

results suggest that Random Subspace and AdaBoost.M1 are the 

best ensemble methods for steel plates faults prediction with 

prediction accuracy more than 80%. We also demonstrate that if 

insignificant features are removed from the datasets, the 

performance of the decision tree ensembles improve for steel 

plates faults prediction. The results suggest the future 

development of steel plate faults analysis tools by using decision 

tree ensembles. 

Index Terms— Material informatics, Steel plates faults, Data 

mining, Decision trees, Ensembles. 

I. INTRODUCTION  

Materials informatics [1] is a field of study that applies the 

principles of data mining techniques to material science. It is 

very important to predict the material behavior correctly. As 

we cannot do the very large number of experiments without 

high cost and time, the prediction of material properties by 

computer methods is gaining ground.  A fault is defined as an 

abnormal behavior. Defects or Faults detection is an important 

problem in material science [2]. The timely detection of faults 

may save lot of time and money.  The steel industry is one of 

the areas which have fault detection problem. The task is to 

detect the type of defects, steel plates have. Some of the defects 

are Pastry, Z-Scratch, K-Scatch, Stains, Dirtiness, and Bumps 

etc. One of the tradition methods is to have manual inspection 

of each steel plate to find out the defects. This method is time 

consuming and need lot of efforts. The automation of fault 

detection technique is emerging as a powerful technique for 

fault detection [3]. This process relies on data mining 

techniques [4] to predict the fault detection. These techniques 

use past data (the data consist of features and the output that is 

to be predicted by using features) to construct models (which 

are also called classifiers) and these models are used to predict 

the faults.  

Classifiers ensembles are popular data mining techniques 

[5]. Classifier ensembles are combination of base models; the 

decision of each base model is combined to get the final 

decision.  A decision tree [6] is very popular classifier which 

has been successfully used for various applications. Decision 

tree ensembles have been very accurate classifiers and have 

shown excellent performance in different applications [7].  

It has also been shown that not all features that are used for 

prediction are useful [8]. Removing some of the insignificant 

features may improve the performance of the classifiers. 

Hence, it is important to analyze the data to remove 

insignificant features.  

Various data mining techniques [9, 10] have been used to 

predict the steel plate faults, however, there is no detailed study 

to show the performance of different kinds of decision tree 

ensembles for predicting steel plate faults.  The advantage of 

the decision tree ensembles is that they give accurate 

predictions [11]. Hence, we expect that decision tree ensembles 

will perform well for steel plate fault predictions. As there has 

been no study to see the effect of removing insignificant 

features on prediction accuracy for steel plate faults, it will be 

useful to do this study for better prediction results. There are 

two objectives of the paper; 

1- There are many decision tree ensemble methods. In this 

paper we will find out which method is the best for steel plates 

prediction problem. 

2- To investigate the effect of removing insignificant 

features on the prediction accuracy for decision tree ensembles 

for steel plates faults. 

II. RELATED WORKS 

In this section, we will discuss various data mining 

techniques that were used in this paper. 

 

Decision trees  

Decision trees are very popular tools for classification as 

they produce rules that can be easily analyzed by human 
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beings.  A decision tree can be used to classify an example by 

starting at the root of the tree and moving through it until a leaf 

node, which provides the rules for classification of the 

example. There are various methods to produce decision trees, 

however C4.5 [6] and CART trees [12] are the most popular 

decision tree methods. 

 

Classifier Ensembles  

Ensembles [5] are a combination of multiple base models; 

the final classification depends on the combined outputs of 

individual models. Classifier ensembles have shown to produce 

better results than single models, provided the classifiers are 

accurate and diverse.  

Several methods have been proposed to build decision tree 

ensembles. In these methods, randomization is introduced to 

build diverse decision trees. Bagging [13] and Boosting [14] 

introduce randomization by manipulating the training data 

supplied to each classifier. Ho [15] proposes Random 

Subspaces that selects random subsets of input features for 

training an ensemble. Breiman [16] combines Random 

Subspaces technique with Bagging to create Random Forests. 

To build a tree, it uses a bootstrap replica of the training 

sample, then during the tree growing phase, at each node the 

optimal split is selected from a random subset of size K of 

candidate features,  then during the tree growing phase, at each 

node the optimal split is selected from  a random subset of size 

K of candidate features.  We will discuss these techniques in 

detail.  

 

Random Subspaces 

Ho [15] presents Random Subspaces (RS) ensembles. In 

this method, diverse datasets are created by selecting random 

subsets of a feature space. Each decision tree in an ensemble 

learns on one dataset from the pool of different datasets. 

Results of these trees are combined to get the final result. This 

simple method is quite competitive to other ensemble methods. 

Experiments suggest that RS is good when there is certain 

redundancy in features. For datasets where there is no 

redundancy, redundancy needs to be introduced artificially by 

concatenating new features that are linear combinations of 

original features to the original features and treating this as the 

data. 

 

Bagging 

     Bagging [13] generates different bootstrap training datasets 

from the original training dataset and uses each of them to train 

one of the classifiers in the ensemble. For example, to create a 

training set of N data points, it selects one point from the 

training dataset, N times without replacement. Each point has 

equal probability of selection. In one training dataset, some of 

the points get selected more than once, whereas some of them 

are not selected at all. Different training datasets are created by 

this process. When different classifiers of the ensemble are 

trained on different training datasets, diverse classifiers are 

created. Bagging does more to reduce the variance part of the 

error of the base classifier than the bias part of the error. 

 

Adaboost.M1 

Boosting [14] generates a sequence of classifiers with different 

weight distribution over the training set. In each iteration, the 

learning algorithm is invoked to minimize the weighted error, 

and it returns a hypothesis. The weighted error of this 

hypothesis is computed and applied to update the weight on the 

training examples. The final classifier is constructed by a 

weighted vote of the individual classifiers. Each classifier is 

weighted according to its accuracy on the weighted training set 

that it has trained on. The key idea, behind Boosting is to 

concentrate on data points that are hard to classify by 

increasing their weights so that the probability of their 

selection in the next round is increased. In subsequent iteration, 

therefore, Boosting tries to solve more difficult learning 

problems. Boosting reduces both bias and variance parts of the 

error. As it concentrates on hard to classify data points, this 

leads to the decrease in the bias. At the same time classifiers 

are trained on different training data sets so it helps in reducing 

the variance. Boosting has difficulty in learning when the 

dataset is noisy. 

 

Random Forests 

     Random Forests [16] are very popular decision tree 

ensembles. It combines bagging with random subspace. For 

each decision tree, a dataset is created by bagging procedure. 

During the tree growing phase, at each node, k attributes are 

selected randomly and the node is split by the best attribute 

from these k attributes. Breiman [16] shows that Random 

Forests are quite competitive to Adaboost. However, Random 

Forests can handle mislabeled data points better than Adaboost 

can. Due to its robustness of the Random Forests, they are 

widely used. 

 

Feature Selection 

Not all features are useful for prediction [17, 18]. It is 

important to find out insignificant features that may cause error 

in prediction. There are many methods for feature selection, 

however, Relief [19] is a very popular feature selection 

method. Relief is based on feature estimation. Relief assigns a 

value of relevance to each feature. All features with higher 

values than the user given threshold value are selected. 

 

III. RESULTS AND DISCUSSION  

All the experiments were carried out by using WEKA 

software [20]. We did the experiments with Random Subspace, 

Bagging, AdaBoost.M1 and Random Forests modules. For the 

Random subspace, Bagging and AdaBoost.M1 modules, we 

carried out experiments with J48 tree (the implementation of 

C4.5 tree). The size of the ensembles was set to 50. All the 

other default parameters were used in the experiments. We also 

carried out experiment with single J48 tree. Relief module was 

used for selecting most important features. 10-cross fold 

strategy was used in the experiments. The experiments were 

done on the dataset taken from UCI repository [21]. The 
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dataset has 27 independent features and 7 classes; Pastry, Z-

Scratch, K-Scatch, Stains, Dirtiness, and Bumps and Other-

Deffects. The information about the features is provided in 

Table 1. We compared the prediction error of all the methods. 

Low error suggests better performance. 

 

 

 

 

Table 1. – The information about the features of steel plates 

 

Feature 
Number 

Feature Name Feature 

Number 

Feature Name 

1 X_Minimum  15 Edges_Index  

2 X_Maximum  16 Empty_Index  

3 Y_Minimum  17 Square_Index  

4 Y_Maximum  18 Outside_X_Inde

x  

5 Pixels_Areas  19 Edges_X_Index  

6 X_Perimeter  20 Edges_Y_Index  

7 Y_Perimeter  21 Outside_Global_In

dex  

8 Sum_of_Luminosity  22 LogOfAreas  

9 Minimum_of_Lumin

osity  
23 Log_X_Index  

10 Maximum_of_Lumin

osity  
24 Log_Y_Index  

11 Length_of_Conveyer  25 Orientation_Index  

12 TypeOfSteel_A300  26 Luminosity_Index  

13 TypeOfSteel_A400  27 SigmoidOfAreas  

14 Steel_Plate_Thicknes

s  
  

 

 

 

 

 

Table 2- Classification error of various methods with all the 

features used for the training and prediction. 

 

Classification Method Classification Error in % 

Random Subspace 19.62 

Bagging 19.93 

AdaBoost.M1 19.83 

Random Forests 20.76 

Single Tree 23.95 

 

 

 

 

Table 3- Classification error of various methods with 20 

most important features, calculated from Relief method, used 

for the training and prediction. 

 

Classification Method Classification Error in % 

Random Subspace 20.60 

Bagging 19.19 

AdaBoost.M1 18.08 

Random Forests 20.04 

Single Tree 23.13 

 

 

 

 

 

Table 4- Classification error of various methods with 

15 most important features, calculated from Relief method, 

used for the training and prediction. 

 

Classification Method Classification Error in % 

Random Subspace 21.32 

Bagging 21.70 

AdaBoost.M1 21.38 

Random Forests 22.35 

Single Tree 24.67 
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Fig. 1. Prediction error vs number of features graph for  

Bagging method.  
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Fig. 2. Prediction error vs number of features graph for  

AdaBoot.M1 method. 

 

 

Discussion 

The results with all features, 20 most important features and 15 

most important features are shown in Table 2, Table 3 and 

Table 4 respectively. Results suggest that with all features, 

Random Subspace performed best. Adaboost.M1 came second.  

Results for all the classifier methods except Random Subspace 

improved when the best 20 features were selected. For 

example, AdaBoost.M1 had 18.08 % classification error with 

15 features, whereas with all features the error was 19.83 %. It 

suggests that some of the features were insignificant so 

removing those features improved the performance. As 

discussed for Random Forests, the ensemble method is useful 

when we have large number of features, hence removing 

features had adverse effect on the performance.  With 10 most 

important features, the performance of all the classification 

methods degraded, it suggests that we removed some of the 

significant features from the datasets that had adverse effect on 

the performance of the classification methods.  Results for 

Bagging and AdaBoost.M1 are presented in Fig. 1 and Fig. 2 

respectively. These figures show that by removing the 

insignificant features the error first decreases and then 

increases. This suggests that the dataset has more than 15 

important features. 

The best performance is achieved with AdaBoost.M1 

(18.08 % error) with 20 features. It shows that a good 

combination of ensemble method and feature selection method 

can be useful for steel plates defects. Results suggest that all 

the ensembles method performed better than single trees. This 

demonstrates the efficacy of the decision tree ensemble 

methods for steel plates defects problem.  

IV. CONCLUSION AND FUTURE WORK 

Data mining techniques are useful for predicting material 

properties. In this paper, we show that decision tree ensembles 

can be used to predict the steel plate faults. We carried out 

experiments with different decision tree ensemble methods. 

We found that AdaBoost.M1 performed best (18.08 % error) 

when we removed 12  insignificant features. In this paper, we 

showed that decision tree ensembles particularly Random 

subspace and AdaBoost.M1 are very useful for steel plates 

faults prediction. We also observed that removing 7 

insignificant features improves the performance of decision 

tree ensembles. In this paper, we applied decision tree 

ensembles methods with Relief feature selection method for 

predicting steel plates faults, in future we will apply ensembles 

of neural networks [22] and support vector machines [23] for 

predicting for predicting steel plates faults. In future, we will 

use other feature section methods [17, 18] to study their 

performance for steel plate faults prediction. 
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